7 research outputs found

    A U.S. Partnership with India and Poland to Track Acute Chemical Releases to Serve Public Health

    Get PDF
    We describe a collaborative effort between the U.S., India, and Poland to track acute chemical releases during 2005–2007. In all three countries, fixed facility events were more common than transportation-related events; manufacturing and transportation/warehousing were the most frequently involved industries; and equipment failure and human error were the primary contributing factors. The most commonly released nonpetroleum substances were ammonia (India), carbon monoxide (U.S.) and mercury (Poland). More events in India (54%) resulted in victims compared with Poland (15%) and the U.S. (9%). The pilot program showed it is possible to successfully conduct international surveillance of acute hazardous substances releases with careful interpretation of the findings

    Carcinogenic and mutagenic agents in the workplace, Poland, 2011–2012

    No full text
    Background: The objective of the study was the analysis of structure of carcinogenic or mutagenic chemical substances and dusts occurring in Polish enterprises, 2011–2012, including the number of exposed employees reported to the “Central register of data on exposure to carcinogenic or mutagenic chemical substances, mixtures, agents or technological processes”, Nofer Institute of Occupational Medicine, ƁódĆș. In the paper the aims, range and methodology of data collecting by the Central Register are presented. Material and Methods: Qualitative and quantitative analyses of the data on occupational exposure to carcinogenic substances and technological processes reported by employers were carried out. Results: In 2011–2012 approximately 2600 plants reported more than 300 carcinogenic or mutagenic chemical substances annually. The most common occupational chemical carcinogens/mutagens were: benzene, one of the unspecified gasoline, chromium(VI) compounds, asbestos, chromium(VI) trioxide, ethylene oxide and benzo[a]pyrene. The highest number of employees was exposed to particular polycyclic aromatic hydrocarbons (PAHs). Hardwood dust was the major occupational carcinogen listed in the technological processes inventory with approximately 11 000 employees exposed in about 650 enterprises annually. Conclusions: The amended legislation concerning occupational exposure to carcinogens has not significantly influenced the exposure structure in Poland. Nevertheless it permited to determine the actual total number of the occupationally exposed to carcinogens. Med Pr 2015;66(1):29–3

    Chemical carcinogenic and mutagenic agents in the workplace, Poland, 2008–2010

    No full text
    Background: The aim of this paper is to present a concise but comprehensive information on the occurrence of carcinogenic or mutagenic agents in Polish enterprises and the number of workers exposed to those agents reported to the central register by employers. Objectives and responsibilities of the register, as well as the range and methods of data gathering are discussed. Material and Methods: Data concerning carcinogenic or mutagenic chemical substances and technological processes reported to central register in 2008-2010 were analyzed. Results: In 2008-2010 more than 300 carcinogenic or mutagenic chemical substances were reported to the register. Approximately 2500 plants reported above 150 000 per-person-exposures annually. Among all technological processes regarded as occupational carcinogens, hardwood dusts exposure (about 660 companies; 11 000-13 000 exposed workers each year) and exposure to polycyclic aromatic hydrocarbons (PAHs) present in coal products (117-125 plantsl 3000 exposed per year) were reported. Conclusions: The most widespread carcinogenic/mutagenic substances were: benzene, chromium(VI) compounds: potassium dichromate and chromate, chromium(VI) trioxide and other chromium compounds, ethylene oxide, asbestos, benzo[a]pyrene and gasoline. The highest number of men was exposed to particular PAHs and benzene , and the majority of women was exposed to benzene, potassium dichromate and chromate, acrylamide, ethylene oxide and gasoline. The lack of clear-cut definitione of occupational exposure to carcinogen creates a problem faced by employers in defining the accurate number of exposed workers. Med Pr 2013;64(2):181–19

    Chemical incidents resulted in hazardous substances releases in the context of human health hazards

    No full text
    Objectives: The research purpose was to analyze data concerning chemical incidents in Poland collected in 1999–2009 in terms of health hazards. Material and Methods: The data was obtained, using multimodal information technology (IT) system, from chemical incidents reports prepared by rescuers at the scene. The final analysis covered sudden events associated with uncontrolled release of hazardous chemical substances or mixtures, which may potentially lead to human exposure. Releases of unidentified substances where emergency services took action to protect human health or environment were also included. Results: The number of analyzed chemical incidents in 1999–2009 was 2930 with more than 200 different substances released. The substances were classified into 13 groups of substances and mixtures posing analogous risks. Most common releases were connected with non-flammable corrosive liquids, including: hydrochloric acid (199 cases), sulfuric(VI) acid (131 cases), sodium and potassium hydroxides (69 cases), ammonia solution (52 cases) and butyric acid (32 cases). The next group were gases hazardous only due to physico-chemical properties, including: extremely flammable propane-butane (249 cases) and methane (79 cases). There was no statistically significant trend associated with the total number of incidents. Only with the number of incidents with flammable corrosive, toxic and/or harmful liquids, the regression analysis revealed a statistically significant downward trend. The number of victims reported was 1997, including 1092 children and 18 fatalities. Conclusions: The number of people injured, number of incidents and the high 9th place of Poland in terms of the number of Seveso establishments, and 4 times higher number of hazardous industrial establishments not covered by the Seveso Directive justify the need for systematic analysis of hazards and their proper identification. It is advisable enhance health risk assessment, both qualitative and quantitative, by slight modification of the data collection system so as to enable the determination of released chemical concentration and exposed populations. Int J Occup Med Environ Health 2017;30(1):95–11

    Cytostatics as hazardous chemicals in healthcare workers’ environment

    No full text
    Cytostatics not only induce significant side-effects in patients treated oncologically but also pose a threat to the health of occupationally exposed healthcare workers: pharmacists, physicians, nurses and other personnel. Since the 1970s numerous reports from various countries have documented the contamination of working areas with cytostatics and the presence of drugs/metabolites in the urine or blood of healthcare employees, which directly indicates the occurrence of occupational exposure to these drugs. In Poland the significant scale of occupational exposure to cytostatics is also confirmed by the data collected in the central register of occupational carcinogens/mutagens kept by the Nofer Institute of Occupational Medicine. The assessment of occupational exposure to cytostatics and health risks constitutes employers’ obligation. Unfortunately, the assessment of occupational risk resulting from exposure to cytostatics raises a number of concerns. Provisions governing the problem of workers’ health protection are not unequivocal because they derive from a variety of law areas, especially in a matter of hazard classification and safety data sheets for cytostatics. Moreover, no legally binding occupational exposure limits have been set for cytostatics or their active compounds, and analytical methods for these substances airborne and biological concentrations are lacking. Consequently, the correct assessment of occupational exposure to cytostatics, the evaluation of health hazards and the development of the proper preventive strategy appear difficult. The authors of this article described and discussed the amendments to the European provisions concerning chemicals in the light of employers’ obligations in the field of employees’ heath protection against the consequences of exposure to cytostatics. Some modifications aimed at a more effective health protection of workers occupationally exposed to cytostatics were also proposed. Int J Occup Med Environ Health. 2019;32(2):141–5

    Hygiene and legal aspects of occupational exposure assessment to cytostatics

    No full text
    The employers responsibilities for the assessment of occupational exposure to cytostatics in the workplace were analyzed in the light of existing legal regulations. Cytostatics may pose a threat to health and life of workers taking care of patients treated oncologically, i.e., pharmacists, physicians, nurses and other personnel. The significant scale of occupational exposure to cytostatics in Poland is confirmed by the data collected in the Central Register of Data on Exposure to Carcinogenic or Mutagenic Substances, Mixtures, Agents or Technological Processes, maintained by the Nofer Institute of Occupational Medicine, ƁódĆș, Poland. The issue of occupational risk assessment of exposure to cytostatics gives raise to numerous concerns. Polish regulations concerning health protection of employees occupationally exposed to cytostatics are not unequivocal, as they are derived from different areas of the law, especially those applying to hazard classification, labeling and preparation of safety data sheets for cytostatics. There are neither binding occupational exposure limits legally set for active compounds of antineoplastic drugs nor methods for monitoring of these substances concentrations in a worker’s breathing zone and biological material. This prevents the employer to carry out the correct assessment of occupational exposure, the results of which are the basis for preparing the proper preventive strategy. In this article the consequences of amendments to the European chemical legislation for employers responsible for adequate protection of health and life of employees exposed to cytostatics, were discussed, as well as some legal changes aimed at a better health and life protection of workers exposed to cytostatics in a workplace were proposed. Med Pr 2018;69(1):77–9
    corecore