4 research outputs found

    The Influence of DNA Extraction and Lipid Removal on Human Milk Bacterial Profiles

    No full text
    Culture-independent molecular techniques have advanced the characterization of environmental and human samples including the human milk (HM) bacteriome. However, extraction of high-quality genomic DNA that is representative of the bacterial population in samples is crucial. Lipids removal from HM prior to DNA extraction is common practice, but this may influence the bacterial population detected. The objective of this study was to compare four commercial DNA extraction kits and lipid removal in relation to HM bacterial profiles. Four commercial DNA extraction kits, QIAamp® DNA Microbiome Kit, ZR Fungal/Bacterial DNA MiniPrep™, QIAsymphony DSP DNA Kit and ZymoBIOMICS™ DNA Miniprep Kit, were assessed using milk collected from ten healthy lactating women. The kits were evaluated based on their ability to extract high quantities of pure DNA from HM and how well they extracted DNA from bacterial communities present in a commercial mock microbial community standard spiked into HM. Finally, the kits were evaluated by assessing their extraction repeatability. Bacterial profiles were assessed using Illumina MiSeq sequencing targeting the V4 region of the 16S rRNA gene. The ZR Fungal/Bacterial DNA MiniPrep™ and ZymoBIOMICS™ DNA Miniprep (Zymo Research Corp., Irvine, CA, USA) kits extracted the highest DNA yields with the best purity. DNA extracted using ZR Fungal/Bacterial DNA MiniPrep™ best represented the bacteria in the mock community spiked into HM. In un-spiked HM samples, DNA extracted using the QIAsymphony DSP DNA kit showed statistically significant differences in taxa prevalence from DNA extracted using ZR Fungal/Bacterial DNA MiniPrep™ and ZymoBIOMICS™ DNA Miniprep kits. The only difference between skim and whole milk is observed in bacterial profiles with differing relative abundances of Enhydrobacter and Acinetobacter. DNA extraction, but not lipids removal, substantially influences bacterial profiles detected in HM samples, emphasizing the need for careful selection of a DNA extraction kit to improve DNA recovery from a range of bacterial taxa

    Human Breast Milk Bacteriome in Health and Disease

    No full text
    It is well-known that, beyond nutritional components, human breast milk (HBM) contains a wide variety of non-nutritive bio-factors perfectly suited for the growing infant. In the pre-2000 era, HBM was considered sterile and devoid of micro-organisms. Though HBM was not included as part of the human microbiome project launched in 2007, great strides have been made in studying the bacterial diversity of HBM in both a healthy state and diseased state, and in understanding their role in infant health. HBM provides a vast array of beneficial micro-organisms that play a key role in colonizing the infant’s mucosal system, including that of the gut. They also have a role in priming the infant’s immune system and supporting its maturation. In this review, we provide an in-depth and updated insight into the immunomodulatory, metabolic, and anti-infective role of HBM bacteriome (bacterial community) and its effect on infant health. We also provide key information from the literature by exploring the possible origin of microbial communities in HBM, the bacterial diversity in this niche and the determinants influencing the HBM bacteriome. Lastly, we investigate the role of the HBM bacteriome in maternal infectious disease (human immunodeficiency virus (HIV) and mastitis)), and cancer. Key gaps in HBM bacterial research are also identified

    The Determinants of the Human Milk Metabolome and Its Role in Infant Health

    No full text
    Human milk is needed for optimal growth as it satisfies both the nutritional and biological needs of an infant. The established relationship between breastfeeding and an infant’s health is attributable to the nutritional and non-nutritional, functional components of human milk including metabolites such as the lipids, amino acids, biogenic amines and carbohydrates. These components have diverse roles, including protecting the infant against infections and guiding the development of the infant’s immature immune system. In this review, we provide an in-depth and updated insight into the immune modulatory and anti-infective role of human milk metabolites and their effects on infant health and development. We also review the literature on potential determinants of the human milk metabolome, including maternal infectious diseases such as human immunodeficiency virus and mastitis

    Influence of socio-economic and psychosocial profiles on the human breast milk bacteriome of South African women

    Get PDF
    CITATION: Ojo-Okunola, A. et al. 2019. Influence of Socio-Economic and Psychosocial Profiles on the Human Breast Milk Bacteriome of South African Women. Nutrients, 11(6). doi:10.3390/nu11061390The original publication is available at https://www.mdpi.com/journal/nutrientsThe human breast milk (HBM) bacteriome is an important, continuous source of microbes to the neonate in early life, playing an important role in shaping the infant’s intestinal bacteriome. Study of the composition of the HBM bacteriome is an emerging area of research, with little information available, particularly from low- and middle-income countries. The aim of this study was to characterize the diversity of bacterial communities in HBM samples collected between 6–10 weeks postpartum from lactating South African women and to study potential influencing factors of the bacteriome. Using 16S rRNA gene sequencing of samples from 554 women, we demonstrated that the HBM bacteriome was largely dominated by the phyla Firmicutes (mean relative abundance: 71.1%) and Actinobacteria (mean relative abundance: 16.4%). The most abundant genera identified from the HBM bacteriome were Streptococcus (mean relative abundance: 48.6%), Staphylococcus (mean relative abundance: 17.8%), Rothia (mean relative abundance: 5.8%), and Corynebacterium (mean relative abundance: 4.3%). “Core” bacterial genera including Corynebacterium, Streptococcus, Staphylococcus, Rothia, Veillonella, Gemella, Acinetobacter, Micrococcus and a genus belonging to the Enterobacteriaceae family were present in 80% of samples. HBM samples were classified, according to their bacteriome, into three major clusters, dominated by the genera Staphylococcus (cluster 1), a combination of Staphylococcus and Streptococcus (cluster 2), and Streptococcus (cluster 3). The cluster groups differed significantly for Shannon and chao1 richness indices. Bacterial interactions were studied using co-occurrence networks with positive associations observed between the abundances of Staphylococcus and Corynebacteria (members of the skin microflora) and between Streptococcus, Rothia, Veillonella, and Gemella (members of the oral microflora). HBM from older mothers had a higher Shannon diversity index. The study site was associated with differences in HBM bacteriome composition (permutational multivariate analysis of variance using distance matrices (PERMANOVA), p < 0.05). No other tested socio-demographic or psychosocial factors were associated with HBM bacterial composition.https://www.mdpi.com/2072-6643/11/6/1390Publisher’s versio
    corecore