2 research outputs found

    Additional file 1: Figure S1. of 1-methylnicotinamide and its structural analog 1,4-dimethylpyridine for the prevention of cancer metastasis

    No full text
    Body weight of BALB/c Nude mice intravenously inoculated with 4T1-luc2-tdTomato cells treated with 1-MNA or 1.4-DMP in comparison to the control untreated group of animals. Table S1. The influence of 1-MNA and 1,4-DMP on the growth of selected cancer cell lines in vitro. (DOCX 1705 kb

    DataSheet_1_Immunogenic epitope scanning in bacteriolytic enzymes Pal and Cpl-1 and engineering Pal to escape antibody responses.docx

    No full text
    Bacteriolytic enzymes are promising antibacterial agents, but they can cause a typical immune response in vivo. In this study, we used a targeted modification method for two antibacterial endolysins, Pal and Cpl-1. We identified the key immunogenic amino acids, and designed and tested new, bacteriolytic variants with altered immunogenicity. One new variant of Pal (257-259 MKS → TFG) demonstrated decreased immunogenicity while a similar mutant (257-259 MKS → TFK) demonstrated increased immunogenicity. A third variant (280-282 DKP → GGA) demonstrated significantly increased antibacterial activity and it was not cross-neutralized by antibodies induced by the wild-type enzyme. We propose this variant as a new engineered endolysin with increased antibacterial activity that is capable of escaping cross-neutralization by antibodies induced by wild-type Pal. We show that efficient antibacterial enzymes that avoid cross-neutralization by IgG can be developed by epitope scanning, in silico design, and substitutions of identified key amino acids with a high rate of success. Importantly, this universal approach can be applied to many proteins beyond endolysins and has the potential for design of numerous biological drugs.</p
    corecore