2 research outputs found

    The influence of Percoll (R) density gradient centrifugation before cryopreservation on the quality of frozen wisent (Bison bonasus) epididymal spermatozoa

    No full text
    Background: The wisent (Bison bonasus) is a species that has undergone a population bottleneck. Homozygosity is prevalent within the population and may have a negative impact on semen quality in wisent bulls. Semen samples containing a large amount of functionally and morphologically impaired or dead spermatozoa have lower tolerance for cryopreservation process. Such samples are prone to involve damage acrosomes, to produce and release reactive oxygen which negatively affects proper function of spermatozoan. It is a good practice to select intact and viable gametes before subjecting the sample to cryopreservation to improve the efficiency of this process. The aim of this study was to assess the ability of Percoll (R) density gradient centrifugation in order to improve the quality of wisent spermatozoa after cryopreservation. Spermatozoa samples were analysed with computer-assisted semen analysis system and flow cytometry. Results: Percoll (R) density gradient centrifugation resulted in increased percentage of motile spermatozoa, higher proportion of spermatozoa with normal morphology and proper functionality but also in a significant reduction of the total number of gametes. Nevertheless, the concentration of frozen spermatoza was still sufficient for obtaining a few complete insemination doses suggested for cattle from each epididymis. Conclusions: While creating a high-quality genetic reserve, for in vitro fertilisation purposes, eliminating detritus and improving the overall quality of samples is more important than total number of spermatozoa. For these reasons, the achievement of higher post thaw quality of spermatozoa justifies the purification of samples by centrifugation in a Percoll (R) density gradient prior to the cryopreservation process

    Establishment of a Wisent (Bison bonasus) Germplasm Bank

    No full text
    The wisent, or European bison (Bison bonasus), belongs to the same family (Bovidae) as the American bison and domestic cattle. The wisent is the largest mammal in Europe, and is called the “Forest Emperor”. The wisent is listed as “Vulnerable” on the IUCN Red List, and is protected by international law. Achievements in reproductive biotechnology have opened new possibilities for the cryoconservation of the wisent germplasm. Therefore, this research aimed to improve a strategy for the protection and preservation of the European bison through the creation of a wisent germplasm bank, based on the following procedures: isolation and in vitro maturation (IVM) of oocytes, in vitro fertilization (IVF) of matured oocytes, in vitro embryo culture (IVC), and embryo cryopreservation. Wisent ovaries were isolated from females outside the reproductive season, and eliminated from breeding for reasons other than infertility. Cumulus–oocyte complexes (COCs) were isolated from follicles greater than 2 mm in diameter and matured for 24 h and 30 h. After IVM, COCs were fertilized in vitro with wisent sperm. The obtained wisent zygotes, based on oocytes matured for 24 h and 30 h, were cultured for 216 h. Embryos at the morula and early blastocyst stages were vitrified and then warmed and transferred to interspecies recipients (Bos taurus). USG and biochemical tests were used to monitor pregnancies. This study obtained embryos in the morula and early blastocyst stages only after oocytes were fertilized and matured for 30 h. On average, per oocyte donor, 12.33 ± 0.5 COCs were isolated, and only 9.33 ± 0.61 COCs were qualified for in vitro maturation (75.68%), while 9.16 ± 0.48 COCs were matured (84.32%). On average, per donor, 5.5 ± 0.34 embryos were cleaved (59.96%) after 48 h post-fertilization (hpf), and 3.33 ± 0.21 achieved the eight-cell stage (36.52%) after 96 hpf, while 1 ± 0.21 morula and early blastocyst stages (10.71%) were achieved after 216 hpf. A total of six embryos (one morula and five early blastocysts) were obtained and vitrified; after warming, five of them were interspecies transferred to cattle (Bos taurus). On day 41 after fertilization, 3 out of 5 pregnancies were detected based on USG, P4, and PAG tests. However, no pregnancy was observed on day 86 after fertilization, indicating embryo resorption. This study shows that obtaining wisent embryos in vitro, and subsequent cryopreservation to create a wisent embryo bank, can be applied and implemented for the wisent protection program
    corecore