2 research outputs found

    Understanding Selectin Counter-Receptor Binding from Electrostatic Energy Computations and Experimental Binding Studies

    No full text
    Higher organisms defend themselves against invading micro-organisms and harmful substances with their immune system. Key players of the immune system are the white blood cells (WBC), which in case of infection move in an extravasation process from blood vessels toward infected tissue promoting inflammation. This process starts with the attachment of the WBC to the blood vessel wall, mediated by protein pair interactions of selectins and counter-receptors (C-R). Individual selectin C-R binding is weak and varies only moderately between the three selectin types. Multivalency enhances such small differences, rendering selectin-binding type specific. In this work, we study selectin C-R binding, the initial step of extravasation. We performed electrostatic energy computations based on the crystal structure of one selectin type co-crystallized with the ligating part of the C-R. The agreement with measured free energies of binding is satisfactory. Additionally, we modeled selectin mutant structures in order to explain differences in binding of the different selectin types. To verify our modeling procedures, surface plasmon resonance data were measured for several mutants and compared with computed binding affinities. Binding affinities computed with soaked rather than co-crystallized selectin C-R structures do not agree with measured data. Hence, these structures are inappropriate to describe the binding mode. The analysis of selectin/C-R binding unravels the role played by individual molecular components in the binding event. This opens new avenues to prevent immune system malfunction, designing drugs that can control inflammatory processes by moderating selectin C-R binding

    Exploring the Possible Role of Glu286 in C<i>c</i>O by Electrostatic Energy Computations Combined with Molecular Dynamics

    No full text
    Cytochrome <i>c</i> oxidase (C<i>c</i>O) is a central enzyme in aerobic life catalyzing the conversion of molecular oxygen to water and utilizing the chemical energy to pump protons and establish an electrochemical gradient. Despite intense research, it is not understood how C<i>c</i>O achieves unidirectional proton transport and avoids short circuiting the proton pump. Within this work, we analyzed the potential role of Glu286 as a proton valve. We performed unconstrained MD simulations of C<i>c</i>O with an explicit membrane for up to 80 ns. Those MD simulations revealed that deprotonated Glu286 (Glu286-) is repelled by the negatively charged propionic acid PRD of heme a<sub>3</sub>. Thus, it destabilizes a potential linear chain of waters in the hydrophobic cavity connecting Glu286 with PRD and the binuclear center (BNC). Conversely, protonated Glu286 (Glu286H) may remain in an upward position (oriented toward PRD) and can stabilize the connecting linear water chain in the hydrophobic cavity. We calculated the p<i>K</i><sub>a</sub> of Glu286 under physiological conditions to be above 12, but this value decreases to about 9 under increased water accessibility of Glu286. The latter value is in accordance with experimental measurements. In the time course of MD simulation, we also observed conformations where Glu286 bridges between water molecules located on both sides (the D channel being connected to the N side and the hydrophobic cavity), which might lead to proton backflow
    corecore