36 research outputs found

    High-throughput single nucleotide variant discovery in E14 mouse embryonic stem cells provides a new reference genome assembly

    Get PDF
    Mouse E14 embryonic stem cells (ESCs) are a well-characterized and widespread used ESC line, often employed for genome-wide studies involving next generation sequencing analysis. More than 2Ă—10(9) sequences made on Illumina platform derived from the genome of E14 ESCs were used to build a database of about 2.7Ă—10(6) single nucleotide variants (SNVs). The identified variants are enriched in intergenic regions, but several thousands reside in gene exons and regulatory regions, such as promoters, enhancers, splicing sites and untranslated regions of RNA, thus indicating high probability of an important functional impact on the molecular biology of these cells. We created a new E14 genome assembly reference that increases the number of mapped reads of about 5%. We performed a Reduced Representation Bisulfite Sequencing on E14 ESCs and we obtained an increase of about 120,000 called CpGs and avoided about 20,000 wrong CpG calls with respect to the mm9 genome reference

    Histone Crosstalk between H3S10ph and H4K16ac Generates a Histone Code that Mediates Transcription Elongation

    Get PDF
    SummaryThe phosphorylation of the serine 10 at histone H3 has been shown to be important for transcriptional activation. Here, we report the molecular mechanism through which H3S10ph triggers transcript elongation of the FOSL1 gene. Serum stimulation induces the PIM1 kinase to phosphorylate the preacetylated histone H3 at the FOSL1 enhancer. The adaptor protein 14-3-3 binds the phosphorylated nucleosome and recruits the histone acetyltransferase MOF, which triggers the acetylation of histone H4 at lysine 16 (H4K16ac). This histone crosstalk generates the nucleosomal recognition code composed of H3K9acS10ph/H4K16ac determining a nucleosome platform for the bromodomain protein BRD4 binding. The recruitment of the positive transcription elongation factor b (P-TEFb) via BRD4 induces the release of the promoter-proximal paused RNA polymerase II and the increase of its processivity. Thus, the single phosphorylation H3S10ph at the FOSL1 enhancer triggers a cascade of events which activate transcriptional elongation

    Inflammaging is driven by upregulation of innate immune receptors and systemic interferon signaling and is ameliorated by dietary restriction

    Get PDF
    Aging is characterized by a chronic low-grade inflammation known as inflammaging in multiple tissues, representing a risk factor for age-related diseases. Dietary restriction (DR) is the best-known non-invasive method to ameliorate aging in many organisms. However, the molecular mechanism and the signaling pathways that drive inflammaging across different tissues and how they are modulated by DR are not yet understood. Here we identify a multi-tissue gene network regulating inflammaging. This network is characterized by chromatin opening and upregulation in the transcription of innate immune system receptors and by activation of interferon signaling through interferon regulatory factors, inflammatory cytokines, and Stat1-mediated transcription. DR ameliorates aging-induced alterations of chromatin accessibility and RNA transcription of the inflammaging gene network while failing to rescue those alterations on the rest of the genome. Our results present a comprehensive understanding of the molecular network regulating inflammation in aging and DR and provide anti-inflammaging therapeutic targets

    Molecular Genetic Analysis of 103 Sporadic Colorectal Tumours in Czech Patients

    Get PDF
    The Czech Republic has one of the highest incidences of colorectal cancer (CRC) in Europe. To evaluate whether sporadic CRCs in Czech patients have specific mutational profiles we analysed somatic genetic changes in known CRC genes (APC, KRAS, TP53, CTNNB1, MUTYH and BRAF, loss of heterozygosity (LOH) at the APC locus, microsatellite instability (MSI), and methylation of the MLH1 promoter) in 103 tumours from 102 individuals. The most frequently mutated gene was APC (68.9% of tumours), followed by KRAS (31.1%), TP53 (27.2%), BRAF (8.7%) and CTNNB1 (1.9%). Heterozygous germline MUTYH mutations in 2 patients were unlikely to contribute to the development of their CRCs. LOH at the APC locus was found in 34.3% of tumours, MSI in 24.3% and MLH1 methylation in 12.7%. Seven tumours (6.9%) were without any changes in the genes tested. The analysis yielded several findings possibly specific for the Czech cohort. Somatic APC mutations did not cluster in the mutation cluster region (MCR). Tumours with MSI but no MLH1 methylation showed earlier onset and more severe mutational profiles compared to MSI tumours with MLH1 methylation. TP53 mutations were predominantly located outside the hot spots, and transitions were underrepresented. Our analysis supports the observation that germline MUTYH mutations are rare in Czech individuals with sporadic CRCs. Our findings suggest the influence of specific ethnic genetic factors and/or lifestyle and dietary habits typical for the Czech population on the development of these cancers

    Intragenic DNA methylation prevents spurious transcription initiation.

    Get PDF
    In mammals, DNA methylation occurs mainly at CpG dinucleotides. Methylation of the promoter suppresses gene expression, but the functional role of gene-body DNA methylation in highly expressed genes has yet to be clarified. Here we show that, in mouse embryonic stem cells, Dnmt3b-dependent intragenic DNA methylation protects the gene body from spurious RNA polymerase II entry and cryptic transcription initiation. Using different genome-wide approaches, we demonstrate that this Dnmt3b function is dependent on its enzymatic activity and recruitment to the gene body by H3K36me3. Furthermore, the spurious transcripts can either be degraded by the RNA exosome complex or capped, polyadenylated, and delivered to the ribosome to produce aberrant proteins. Elongating RNA polymerase II therefore triggers an epigenetic crosstalk mechanism that involves SetD2, H3K36me3, Dnmt3b and DNA methylation to ensure the fidelity of gene transcription initiation, with implications for intragenic hypomethylation in cance

    Myc regulates the transcription of PRC2 to control the expression of developmental genes in embryonic stem cells.

    No full text
    Myc family members are critical to maintain embryonic stem cells (ESC) in the undifferentiated state. However, the mechanism by which they perform this task has not yet been elucidated. Here we show that Myc directly upregulates the transcription of all core components of the Polycomb repressive complex 2 (PRC2) as well as the ESC-specific PRC2-associated factors. By expressing Myc protein fused with the estrogen receptor (Myc-ER) in fibroblasts, we observed that Myc, binding to the regulatory elements of Suz12, Ezh2, and Eed, induces the acetylation of histones H3 and H4 and the recruitment of elongating RNA polymerase II at their promoters. The silencing of both c-Myc and N-Myc in ESC results in reduced expression of PRC2 and H3K27me3 at Polycomb target developmental regulators and upregulation of genes involved in primitive endoderm differentiation. The ectopic expression of PRC2 in ESC, either silenced for c-Myc and N-Myc or induced to differentiate by leukemia inhibitory factor (LIF) withdrawal, is sufficient to maintain the H3K27me3 mark at genes with bivalent histone modifications and keep repressed the genes involved in ESC differentiation. Thus, Myc proteins control the expression of developmental regulators via the upregulation of the Polycomb PRC2 complex
    corecore