3 research outputs found
Group A Streptococcus strains causing meningitis without distinct invasive phenotype
Abstract Group A streptococcal (GAS; aka Streptococcus pyogenes) meningitis is a fulminant disease associated with high morbidity and mortality. To elucidate the mechanisms underlying the invasiveness of GAS in meningitis, we compared GAS isolates derived from five cases of meningitis to otitis and colonizing isolates. We did not observe differences in adherence to and invasion of human brain microvascular endothelial cells, virulence factors activity, or barrier disruption. Whole genome sequencing did not reveal particular invasiveness traits. Most patients previously suffered from otitis media suggesting that meningitis likely resulted from a continuous spread of the infection rather than being attributable to changes in the pathogen's virulence
Gp96SIVIg immunization induces potent polyepitope specific, multifunctional memory responses in rectal and vaginal mucosa
The ER-resident chaperone gp96, when released by cell lysis, induces an immunogenic chemokine signature and causes innate immune activation of DC and NK cells. Here we show that intraperitoneal immunization with a genetically engineered, secreted form of gp96, gp96-Ig chaperoning SIV antigens, induces high levels of antigen specific CD8 CTL in the rectal and vaginal mucosa of Rhesus macaques. The frequency of SIV Gag- and SIV Tat-tetramer positive CD8 CTL in the intestinal mucosa reached 30-50% after the third immunization. Tetramer positive CD8 CTL expressed appropriate functional (granzyme B) and migration markers (CD103). The polyepitope specificity of the mucosal CD8 and CD4 response is evident from a strong, multifunctional cytokine response upon stimulation with peptides covering the gag, tat and env proteins. Induction of powerful mucosal effector CD8 CTL responses by cell-based gp96(SIV)-Ig immunization may provide a pathway to the development of safe and effective SIV/HIV vaccines