21 research outputs found

    Resistance to cytotoxicity and sustained release of interleukin-6 and interleukin-8 in the presence of decreased interferon-γ after differentiation of glioblastoma by human natural killer cells.

    Get PDF
    Natural killer (NK) cells are functionally suppressed in the glioblastoma multiforme (GBM) tumor microenvironment. We have recently shown that survival and differentiation of cancer stem-like cells (CSCs)/poorly differentiated tumors are controlled through two distinct phenotypes of cytotoxic and non-cytotoxic/split anergized NK cells, respectively. In this paper, we studied the function of NK cells against brain CSCs/poorly differentiated GBM and their NK cell-differentiated counterparts. Brain CSCs/poorly differentiated GBM, differentiated by split anergized NK supernatants (supernatants from NK cells treated with IL-2 + anti-CD16mAb) expressed higher levels of CD54, B7H1 and MHC-I and were killed less by the NK cells, whereas their CSCs/poorly differentiated counterparts were highly susceptible to NK cell lysis. Resistance to NK cells and differentiation of brain CSCs/poorly differentiated GBM by split anergized NK cells were mediated by interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Brain CSCs/poorly differentiated GBM expressed low levels of TNFRs and IFN-γRs, and when differentiated and cultured with IL-2-treated NK cells, they induced increased secretion of pro-inflammatory cytokine interleukin (IL)-6 and chemokine IL-8 in the presence of decreased IFN-γ secretion. NK-induced differentiation of brain CSCs/poorly differentiated GBM cells was independent of the function of IL-6 and/or IL-8. The inability of NK cells to lyse GBM tumors and the presence of a sustained release of pro-inflammatory cytokines IL-6 and chemokine IL-8 in the presence of a decreased IFN-γ secretion may lead to the inadequacy of NK cells to differentiate GBM CSCs/poorly differentiated tumors, thus failing to control tumor growth

    The panorama of miRNA-mediated mechanisms in mammalian cells

    Get PDF

    Assessment of Immunological Potential of Glial Restricted Progenitor Graft In Vivo—Is Immunosuppression Mandatory?

    No full text
    Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease, causing motor neuron and skeletal muscle loss and death. One of the promising therapeutic approaches is stem cell graft application into the brain; however, an immune reaction against it creates serious limitations. This study aimed to research the efficiency of glial restricted progenitors (GRPs) grafted into murine CNS (central nervous system) in healthy models and the SOD1G93A ALS disease model. The cellular grafts were administered in semiallogenic and allogeneic settings. To investigate the models of immune reaction against grafted GRPs, we applied three immunosuppressive/immunomodulatory regimens: preimplantation factor (PiF); Tacrolimus; and CTLA-4, MR1 co-stimulatory blockade. We tracked the cells with bioluminescence imaging (BLI) in vivo to study their survival. The immune response character was evaluated with brain tissue assays and multiplex ELISA in serum and cerebrospinal fluid (CSF). The application of immunosuppressive drugs is disputable when considering cellular transplants into the immune-privileged site/brain. However, our data revealed that semiallogenic GRP graft might survive inside murine CNS without the necessity to apply any immunomodulation or immunosuppression, whereas, in the situation of allogeneic mouse setting, the combination of CTLA-4, MR1 blockade can be considered as the best immunosuppressive option
    corecore