4 research outputs found

    Next-Generation Sequencing of Connective Tissue Genes in Patients with Classical Ehlers-Danlos Syndrome

    No full text
    Background: Ehlers-Danlos syndrome (EDS) is a common non-inflammatory, congenital connective tissue disorder. Classical type (cEDS) EDS is one of the more common forms, typically caused by mutations in the COL5A1 and COL5A2 genes, though causative mutations in the COL1A1 gene have also been described. Material and methods: The study group included 59 patients of Polish origin, diagnosed with cEDS. The analysis was performed on genomic DNA (gDNA) with NGS technology, using an Illumina sequencer. Thirty-five genes related to connective tissue were investigated. The pathogenicity of the detected variants was assessed by VarSome. Results: The NGS of 35 genes revealed variants within the COL5A1, COL5A2, COL1A1, and COL1A2 genes for 30 of the 59 patients investigated. Our panel detected no sequence variations for the remaining 29 patients. Discussion: Next-generation sequencing, with an appropriate multigene panel, showed great potential to assist in the diagnosis of EDS and other connective tissue disorders. Our data also show that not all causative genes giving rise to cEDS have been elucidated yet

    A risk of essential thrombocythemia in carriers of constitutional CHEK2 gene mutations

    No full text
    Germline mutations of the CHEK2 gene have been reported in some myeloid and lymphoid malignancies, but their impact on development of essential thrombocythemia has not been studied. In 16 out of 106 (15.1%) consecutive patients, newly diagnosed with essential thrombocythemia, we found one of four analyzed CHEK2 mutations: I157T, 1100delC, IVS2+1G>A or del5395. They were associated with the increased risk of disease (OR=3.8; P=0.002). The median age at ET diagnosis among CHEK2+/JAK2V617F+ patients was seven years lower than that among CHEK2−/JAK2V617F+ (52 vs. 59 years; P=0.04), whereas there was no difference in the medians of hematologic parameters between these groups. The results obtained suggest that CHEK2 mutations could potentially contribute to the susceptibility to essential thrombocythemia. The germline inactivation of CHEK2, as it seems, has no direct impact on the development of disease, but it could cause disruption of cell cycle checkpoints and initiate or support the cancerogenic process of essential thrombocythemia at a younger age

    Initial study on COMT and DRD2 gene polymorphisms as well as the influence of temperament and character trait on the severity of alcohol craving in alcohol-dependent patients

    No full text
    The main aim of this work was to determine the impact of COMT and DRD2 gene polymorphisms together with temperament and character traits on alcohol craving severity alcohol-dependent persons. The sample comprised of 89 men and 16 women (aged [Formula: see text]). For the sake of psychological assessment various analytic methods have been applied like the Short Alcohol Dependence Data Questionnaire (SADD), Penn Alcohol Craving Scale (PACS) or Temperament and Character Inventory (TCI) test. The SNP polymorphism of the analyzed genes was determined by Real Time PCR test. The results showed, that the COMT polymorphismmay have an indirected relationship with the intensity and changes in alcohol craving during abstinence. The DRD2 receptor gene polymorphisms are related with the intensity of alcohol craving. It seems that the character traits like “self-targeting”, including “self-acceptance”, are more closely related to the severity of alcohol craving and polymorphic changes in the DRD2 receptor than temperamental traits. Although this is a pilot study the obtained results appeared to be promising and clearly indicate the link betweengene polymorphisms alcohol craving and its severity
    corecore