7 research outputs found

    Mutations in gfpt1 and skiv2l2 Cause Distinct Stage-Specific Defects in Larval Melanocyte Regeneration in Zebrafish

    Get PDF
    The establishment of a single cell type regeneration paradigm in the zebrafish provides an opportunity to investigate the genetic mechanisms specific to regeneration processes. We previously demonstrated that regeneration melanocytes arise from cell division of the otherwise quiescent melanocyte precursors following larval melanocyte ablation with a small molecule, MoTP. The ease of ablating melanocytes by MoTP allows us to conduct a forward genetic screen for mechanisms specific to regeneration from such precursors or stem cells. Here, we reported the identification of two mutants, earthaj23e1 and juliej24e1 from a melanocyte ablation screen. Both mutants develop normal larval melanocytes, but upon melanocyte ablation, each mutation results in a distinct stage-specific defect in melanocyte regeneration. Positional cloning reveals that the earthaj23e1 mutation is a nonsense mutation in gfpt1 (glutamine:fructose-6-phosphate aminotransferase 1), the rate-limiting enzyme in glucosamine-6-phosphate biosynthesis. Our analyses reveal that a mutation in gfpt1 specifically affects melanocyte differentiation (marked by melanin production) at a late stage during regeneration and that gfpt1 acts cell autonomously in melanocytes to promote ontogenetic melanocyte darkening. We identified that the juliej24e1 mutation is a splice-site mutation in skiv2l2 (superkiller viralicidic activity 2-like 2), a predicted DEAD-box RNA helicase. Our in situ analysis reveals that the mutation in skiv2l2 causes defects in cell proliferation, suggesting that skiv2l2 plays a role in regulating melanoblast proliferation during early stages of melanocyte regeneration. This finding is consistent with previously described role for cell division during larval melanocyte regeneration. The analyses of these mutants reveal their stage-specific roles in melanocyte regeneration. Interestingly, these mutants identify regeneration-specific functions not only in early stages of the regeneration process, but also in late stages of differentiation of the regenerating melanocyte. We suggest that mechanisms of regeneration identified in this mutant screen may reveal fundamental differences between the mechanisms that establish differentiated cells during embryogenesis, and those involved in larval or adult growth

    p38 delta mitogen-activated protein kinase Is essential for skin tumor development in mice

    No full text
    Activating Ras mutations occur in a large portion of human tumors. Yet, the signaling pathways involved in Ras-induced tumor formation remain incompletely understood. The mitogen-activated protein kinase pathways are among the best studied Ras effector pathways. The p38 mitogen-activated protein kinase isoforms are important regulators of key biological processes including cell proliferation, differentiation, survival, inflammation, senescence, and tumorigenesis. However, the specific in vivo contribution of individual p38 isoforms to skin tumor development has not been elucidated. Recent studies have shown that p38delta, a p38 family member, functions as an important regulator of epidermal keratinocyte differentiation and survival. In the present study, we have assessed the effect of p38delta deficiency on skin tumor development in vivo by subjecting p38delta knockout mice to a two-stage 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate chemical skin carcinogenesis protocol. We report that mice lacking p38delta gene exhibited a marked resistance to development of 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin papillomas, with increased latency and greatly reduced incidence, multiplicity, and size of tumors compared with wild-type mice. Our data suggest that the underlying mechanism for reduced susceptibility to skin carcinogenesis in p38delta-null mice involves a defect in proliferative response associated with aberrant signaling through the two major transformation-promoting pathways: extracellular signal-regulated kinase 1/2-activator protein 1 and signal transducer and activator of transcription 3. These findings strongly suggest an in vivo role for p38delta in promoting cell proliferation and tumor development in epidermis and may have therapeutic implication for skin cancer

    Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis

    No full text
    Dachsous (Dchs), an atypical cadherin, is an evolutionarily conserved regulator of planar cell polarity, tissue size and cell adhesion. In humans, DCHS1 mutations cause pleiotropic Van Maldergem syndrome. Here, we report that mutations in zebrafish dchs1b and dchs2 disrupt several aspects of embryogenesis, including gastrulation. Unexpectedly, maternal zygotic (MZ) dchs1b mutants show defects in the earliest developmental stage, egg activation, including abnormal cortical granule exocytosis (CGE), cytoplasmic segregation, cleavages and maternal mRNA translocation, in transcriptionally quiescent embryos. Later, MZdchs1b mutants exhibit altered dorsal organizer and mesendodermal gene expression, due to impaired dorsal determinant transport and Nodal signaling. Mechanistically, MZdchs1b phenotypes can be explained in part by defective actin or microtubule networks, which appear bundled in mutants. Accordingly, disruption of actin cytoskeleton in wild-type embryos phenocopied MZdchs1b mutant defects in cytoplasmic segregation and CGE, whereas interfering with microtubules in wild-type embryos impaired dorsal organizer and mesodermal gene expression without perceptible earlier phenotypes. Moreover, the bundled microtubule phenotype was partially rescued by expressing either full-length Dchs1b or its intracellular domain, suggesting that Dchs1b affects microtubules and some developmental processes independent of its known ligand Fat. Our results indicate novel roles for vertebrate Dchs in actin and microtubule cytoskeleton regulation in the unanticipated context of the single-celled embryo

    Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis

    No full text
    Dachsous (Dchs), an atypical cadherin, is an evolutionarily conserved regulator of planar cell polarity, tissue size and cell adhesion. In humans, DCHS1 mutations cause pleiotropic Van Maldergem syndrome. Here, we report that mutations in zebrafish dchs1b and dchs2 disrupt several aspects of embryogenesis, including gastrulation. Unexpectedly, maternal zygotic (MZ) dchs1b mutants show defects in the earliest developmental stage, egg activation, including abnormal cortical granule exocytosis (CGE), cytoplasmic segregation, cleavages and maternal mRNA translocation, in transcriptionally quiescent embryos. Later, MZdchs1b mutants exhibit altered dorsal organizer and mesendodermal gene expression, due to impaired dorsal determinant transport and Nodal signaling. Mechanistically, MZdchs1b phenotypes can be explained in part by defective actin or microtubule networks, which appear bundled in mutants. Accordingly, disruption of actin cytoskeleton in wild-type embryos phenocopied MZdchs1b mutant defects in cytoplasmic segregation and CGE, whereas interfering with microtubules in wild-type embryos impaired dorsal organizer and mesodermal gene expression without perceptible earlier phenotypes. Moreover, the bundled microtubule phenotype was partially rescued by expressing either full-length Dchs1b or its intracellular domain, suggesting that Dchs1b affects microtubules and some developmental processes independent of its known ligand Fat. Our results indicate novel roles for vertebrate Dchs in actin and microtubule cytoskeleton regulation in the unanticipated context of the single-celled embryo

    Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis

    No full text
    Dachsous (Dchs), an atypical cadherin, is an evolutionarily conserved regulator of planar cell polarity, tissue size and cell adhesion. In humans, DCHS1 mutations cause pleiotropic Van Maldergem syndrome. Here, we report that mutations in zebrafish dchs1b and dchs2 disrupt several aspects of embryogenesis, including gastrulation. Unexpectedly, maternal zygotic (MZ) dchs1b mutants show defects in the earliest developmental stage, egg activation, including abnormal cortical granule exocytosis (CGE), cytoplasmic segregation, cleavages and maternal mRNA translocation, in transcriptionally quiescent embryos. Later, MZdchs1b mutants exhibit altered dorsal organizer and mesendodermal gene expression, due to impaired dorsal determinant transport and Nodal signaling. Mechanistically, MZdchs1b phenotypes can be explained in part by defective actin or microtubule networks, which appear bundled in mutants. Accordingly, disruption of actin cytoskeleton in wild-type embryos phenocopied MZdchs1b mutant defects in cytoplasmic segregation and CGE, whereas interfering with microtubules in wild-type embryos impaired dorsal organizer and mesodermal gene expression without perceptible earlier phenotypes. Moreover, the bundled microtubule phenotype was partially rescued by expressing either full-length Dchs1b or its intracellular domain, suggesting that Dchs1b affects microtubules and some developmental processes independent of its known ligand Fat. Our results indicate novel roles for vertebrate Dchs in actin and microtubule cytoskeleton regulation in the unanticipated context of the single-celled embryo

    Cardiac signaling genes exhibit unexpected sequence diversity in sporadic cardiomyopathy, revealing HSPB7 polymorphisms associated with disease

    Get PDF
    Sporadic heart failure is thought to have a genetic component, but the contributing genetic events are poorly defined. Here, we used ultra-high-throughput resequencing of pooled DNAs to identify SNPs in 4 biologically relevant cardiac signaling genes, and then examined the association between allelic variants and incidence of sporadic heart failure in 2 large Caucasian populations. Resequencing of DNA pools, each containing DNA from approximately 100 individuals, was rapid, accurate, and highly sensitive for identifying common and rare SNPs; it also had striking advantages in time and cost efficiencies over individual resequencing using conventional Sanger methods. In 2,606 individuals examined, we identified a total of 129 separate SNPs in the 4 cardiac signaling genes, including 23 nonsynonymous SNPs that we believe to be novel. Comparison of allele frequencies between 625 Caucasian nonaffected controls and 1,117 Caucasian individuals with systolic heart failure revealed 12 SNPs in the cardiovascular heat shock protein gene HSPB7 with greater proportional representation in the systolic heart failure group; all 12 SNPs were confirmed in an independent replication study. These SNPs were found to be in tight linkage disequilibrium, likely reflecting a single genetic event, but none altered amino acid sequence. These results establish the power and applicability of pooled resequencing for comparative SNP association analysis of target subgenomes in large populations and identify an association between multiple HSPB7 polymorphisms and heart failure
    corecore