11 research outputs found

    Massage Therapy for Osteoarthritis of the Knee: A Randomized Dose-Finding Trial

    Get PDF
    In a previous trial of massage for osteoarthritis (OA) of the knee, we demonstrated feasibility, safety and possible efficacy, with benefits that persisted at least 8 weeks beyond treatment termination.We performed a RCT to identify the optimal dose of massage within an 8-week treatment regimen and to further examine durability of response. Participants were 125 adults with OA of the knee, randomized to one of four 8-week regimens of a standardized Swedish massage regimen (30 or 60 min weekly or biweekly) or to a Usual Care control. Outcomes included the Western Ontario and McMaster Universities Arthritis Index (WOMAC), visual analog pain scale, range of motion, and time to walk 50 feet, assessed at baseline, 8-, 16-, and 24-weeks.WOMAC Global scores improved significantly (24.0 points, 95% CI ranged from 15.3-32.7) in the 60-minute massage groups compared to Usual Care (6.3 points, 95% CI 0.1-12.8) at the primary endpoint of 8-weeks. WOMAC subscales of pain and functionality, as well as the visual analog pain scale also demonstrated significant improvements in the 60-minute doses compared to usual care. No significant differences were seen in range of motion at 8-weeks, and no significant effects were seen in any outcome measure at 24-weeks compared to usual care. A dose-response curve based on WOMAC Global scores shows increasing effect with greater total time of massage, but with a plateau at the 60-minute/week dose.Given the superior convenience of a once-weekly protocol, cost savings, and consistency with a typical real-world massage protocol, the 60-minute once weekly dose was determined to be optimal, establishing a standard for future trials.ClinicalTrials.gov NCT00970008

    H3K9 histone acetylation predicts pluripotency and reprogramming capacity of ES cells

    No full text
    The pluripotent genome is characterized by unique epigenetic features and a decondensed chromatin conformation. However, the relationship between epigenetic regulation and pluripotency is not altogether clear. Here, using an enhanced MEF/ESC fusion protocol, we compared the reprogramming potency and histone modifications of different embryonic stem cell (ESC) lines (R1, J1, E14, C57BL/6) and found that E14 ESCs are significantly less potent, with significantly reduced H3K9ac levels. Treatment of E14 ESCs with histone deacetylase (HDAC) inhibitors (HDACi) increased H3K9ac levels and restored their reprogramming capacity. Microarray and H3K9ac ChIP-seq analyses, suggested increased extracellular matrix (ECM) activity following HDACi treatment in E14 ESCs. These data suggest that H3K9ac may predict pluripotency and that increasing pluripotency by HDAC inhibition acts through H3K9ac to enhance the activity of target genes involved in ECM production to support pluripotency

    30- and 60-Minute Massage Protocols.

    No full text
    <p>*Accounting for time spent in transition including the welcome, transition to the massage room, taking off jewelry, and other preparatory activities.</p

    Dose-Response Curve.

    No full text
    <p>Dose-response curve plotting dose (total minutes over the course of 8-weeks of massage) (x-axis) vs. improvement (change in WOMAC Global scores after 8-weeks). Dose-response effects plateaued at 480-minutes (Group 3), with no significant improvements noted in the 720-minute (Group 4) dose.</p

    Mean change (95% CI) in outcomes at 8-weeks post-baseline (primary endpoint).

    No full text
    <p>Values are mean with 95% confidence intervals; negative values indicate improvement;</p>†<p>Significant (non-overlap) compared to Usual Care;</p>‡<p>Significant (non-overlap) compared to Group 1.</p

    Tumor Treating Fields (TTFields) Concomitant with Sorafenib Inhibit Hepatocellular Carcinoma In Vitro and In Vivo

    No full text
    Hepatocellular carcinoma (HCC), a highly aggressive liver cancer, is a leading cause of cancer-related death. Tumor Treating Fields (TTFields) are electric fields that exert antimitotic effects on cancerous cells. The aims of the current research were to test the efficacy of TTFields in HCC, explore the underlying mechanisms, and investigate the possible combination of TTFields with sorafenib, one of the few front-line treatments for patients with advanced HCC. HepG2 and Huh-7D12 human HCC cell lines were treated with TTFields at various frequencies to determine the optimal frequency eliciting maximal cell count reduction. Clonogenic, apoptotic effects, and autophagy induction were measured. The efficacy of TTFields alone and with concomitant sorafenib was tested in cell cultures and in an orthotopic N1S1 rat model. Tumor volume was examined at the beginning and following 5 days of treatment. At study cessation, tumors were weighed and examined by immunohistochemistry to assess autophagy and apoptosis. TTFields were found in vitro to exert maximal effect at 150 kHz, reducing cell count and colony formation, increasing apoptosis and autophagy, and augmenting the effects of sorafenib. In animals, TTFields concomitant with sorafenib reduced tumor weight and volume fold change, and increased cases of stable disease following treatment versus TTFields or sorafenib alone. While each treatment alone elevated levels of autophagy relative to control, TTFields concomitant with sorafenib induced a significant increase versus control in tumor ER stress and apoptosis levels, demonstrating increased stress under the multimodal treatment. Overall, TTFields treatment demonstrated efficacy and enhanced the effects of sorafenib for the treatment of HCC in vitro and in vivo, via a mechanism involving induction of autophagy
    corecore