6 research outputs found

    Low susceptibility of invasive red lionfish (Pterois volitans) to a generalist ectoparasite in both its introduced and native ranges.

    No full text
    Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans) have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges

    Nocturnal migration reduces exposure to micropredation in a coral reef fish

    No full text
    Tropical Atlantic reef fishes in the family Haemulidae (grunts) remain quiescent on reefs during the day and migrate to seagrass beds or sand flats at night. Hypothesized advantages of such nocturnal migrations are increased food availability and/or decreased predation risk. Here, we tested predictions of an alternative hypothesis that nocturnal migrations of French grunt, Haemulon flavolineatum (Desmarest, 1823), reduce exposure to blood-feeding gnathiid isopods. The departure of grunts from the reef coincides with increasing gnathiid activity. In field experiments, subadult fish placed in cages and deployed on the reef at night harbored significantly more gnathiids than those placed in the seagrass habitat. However, this was not the case during the day when gnathiid activity in all habitats is low. In another experiment, the timing of return to the reef was determined to coincide with the postdawn decrease in gnathiid activity. Estimates of cumulative gnathiid exposure at two sites revealed that grunts remaining in reef habitat at night would experience an average of 3 and 44 times more gnathiids than if they spent the night in the seagrass bed, and could reach more than 300 gnathiids on a single fish. In a final field experiment, even recently-settled (<2 cm) juvenile grunts were infested by gnathiids, supporting previous laboratory experiments showing that a single third-stage gnathiid will infest and kill grunts of this size. Combined, these findings suggest that nocturnal feeding migrations of French grunts and ecologically similar fishes result in reduced exposure to blood-feeding gnathiid isopods

    Box and whisker plot of infestation of gnathiid isopods on red lionfish, <i>Pterois volitans</i>, compared with ecologically similar, native tropical western Atlantic species.

    No full text
    <p>Levels of infestation are expressed as residuals from regression of gnathiid loads against host fish surface area and the local abundance of gnathiids as measured by the average gnathiid density on 5 French grunt “standards” placed near each host fish. Data for Caribbean species are grouped by families, with species codes given in parentheses: Haemulidae: Hs =  <i>Haemulon sciurus</i> (n = 24); Lutjanidae: La =  <i>Lutjanus apodus</i> (n = 29), Ls = <i>L. synagris</i> (n = 14); Serranidae: Eg =  <i>Epinephelus guttatus</i> (n = 26); Holocentridae: Hr =  <i>Holocentrus rufus</i> (n = 32); Ha =  <i>Holocentrus adscensionis</i> (n = 20); Scorpaenidae: Sp =  <i>Scorpaena plumieri</i> (n = 7); <i>Pterois volitans</i> (n = 30). Dashed line  =  mean, solid line  =  median, outliers are shown as single points.</p

    Low Susceptibility of Invasive Red Lionfish (Pterois volitans) to a Generalist Ectoparasite in Both Its Introduced and Native Ranges

    No full text
    Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans) have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges

    The relationship between lunar periodicity and activity of fish-parasitic gnathiid isopods in the Caribbean

    No full text
    Gnathiid isopod larvae are members of the marine demersal zooplankton community and are common ectoparasites of coral reef fishes, emerging from the substratum, mostly at night and crepuscular periods to feed on fish blood. Given that the activity of many marine organisms is often linked to changes in the phase of the moon, we examined the relationship between lunar phase and activity in gnathiid isopods on Caribbean reefs. We employed two sampling methods to quantify gnathiid activity: (1) Emergence traps set on reefs over a 24 h period; and (2) live fish placed in cages on reefs and retrieved during night and dawn peaks in gnathiid activity. These were compared during discrete phases as well as a continuous metric, the lunar "angle", and an estimate of ambient light availability (luminance). Lunar phase and angle varied in their statistical effect on gnathiid activity patterns by sampling method and/or year. Luminance had a significant but inconsistent effect on measures of gnathiid activity. Our results suggest that changes in the lunar cycle are not a strong predictor of gnathiid activity at our shallow reef study sites
    corecore