5 research outputs found

    Supporting Data for the Characterization of PNA-DNA Four-Way Junctions

    Get PDF
    Holliday or DNA four-way junctions (4WJs) are cruciform/bent structures composed of four DNA duplexes. 4WJs are key intermediates in homologous genetic recombination and double-strand break repair. To investigate 4WJs in vitro, junctions are assembled using four asymmetric DNA strands. The presence of four asymmetric strands about the junction branch point eliminates branch migration, and effectively immobilizes the resulting 4WJ. The purpose of these experiments is to show that immobile 4WJs composed of DNA and peptide nucleic acids (PNAs) can be distinguished from contaminating labile nucleic acid structures. These data compare the electrophoretic mobility of hybrid PNA–DNA junctions vs. i) a classic immobile DNA 4WJ, J1 and ii) contaminating nucleic acid structures

    Evaluation of a Small Molecule As a Method To Stabilize the Formation of a Four-Way DNA Junction

    No full text
    Small molecules can be used promote the formation or assembly of four-way DNA junctions (4WJs). A series of small molecules were evaluated with four-way and three-way junctions (3WJs). From these assays, a ruthenium biphenyl compound [Ru(byp)2] generated the best results. 4WJs and 3WJs formed stable complexes when incubated with Ru(byp)2 in the presence of MgCl2 – conditions that are more similar to physiological conditions. Future research will focus on measuring the thermostability of Ru(byp)2-stablized 4WJs via circular dichroism (CD) and UV spectroscopy. The long-term goal of this strategy is to use Ru(byp)2 or alternate small molecules to target/stall DNA replication of cancer cells

    Characterization of the Structural and Protein Recognition Properties of Hybrid PNA-DNA Four-Way Junctions

    No full text
    The objective of this study is to evaluate the structure and protein recognition properties of hybrid four-way junctions (4WJs) composed of DNA and peptide nucleic acid (PNA) strands. We compare a classic immobile DNA junction, J1, vs. six PNA–DNA junctions, including a number with blunt DNA ends and multiple PNA strands. Circular dichroism (CD) analysis reveals that hybrid 4WJs are composed of helices that possess structures intermediate between A- and B-form DNA, the apparent level of A-form structure correlates with the PNA content. The structure of hybrids that contain one PNA strand is sensitive to Mg+2. For these constructs, the apparent B-form structure and conformational stability (Tm) increase in high Mg+2. The blunt-ended junction, b4WJ-PNA3, possesses the highest B-form CD signals and Tm (40.1 °C) values vs. all hybrids and J1. Protein recognition studies are carried out using the recombinant DNA-binding protein, HMGB1b. HMGB1b binds the blunt ended single-PNA hybrids, b4WJ-PNA1 and b4WJ-PNA3, with high affinity. HMGB1b binds the multi-PNA hybrids, 4WJ-PNA1,3 and b4WJ-PNA1,3, but does not form stable protein-nucleic acid complexes. Protein interactions with hybrid 4WJs are influenced by the ratio of A- to B-form helices: hybrids with helices composed of higher levels of B-form structure preferentially associate with HMGB1b

    Supporting data for the characterization of PNA–DNA four-way junctions

    Get PDF
    Holliday or DNA four-way junctions (4WJs) are cruciform/bent structures composed of four DNA duplexes. 4WJs are key intermediates in homologous genetic recombination and double-strand break repair. To investigate 4WJs in vitro, junctions are assembled using four asymmetric DNA strands. The presence of four asymmetric strands about the junction branch point eliminates branch migration, and effectively immobilizes the resulting 4WJ. The purpose of these experiments is to show that immobile 4WJs composed of DNA and peptide nucleic acids (PNAs) can be distinguished from contaminating labile nucleic acid structures. These data compare the electrophoretic mobility of hybrid PNA–DNA junctions vs. i) a classic immobile DNA 4WJ, J1 and ii) contaminating nucleic acid structures
    corecore