121 research outputs found
"Photobiomics" : can light, including photobiomodulation, alter the microbiome?
Objective: The objective of this review is to consider the dual effects of microbiome and photobiomodulation (PBM) on human health and to suggest a relationship between these two as a novel mechanism. Background: PBM describes the use of low levels of visible or near-infrared (NIR) light to heal and stimulate tissue, and to relieve pain and inflammation. In recent years, PBM has been applied to the head as an investigative approach to treat diverse brain diseases such as stroke, traumatic brain injury (TBI), Alzheimer's and Parkinson's diseases, and psychiatric disorders. Also, in recent years, increasing attention has been paid to the total microbial population that colonizes the human body, chiefly in the gut and the mouth, called the microbiome. It is known that the composition and health of the gut microbiome affects many diseases related to metabolism, obesity, cardiovascular disorders, autoimmunity, and even brain disorders. Materials and methods: A literature search was conducted for published reports on the effect of light on the microbiome. Results: Recent work by our research group has demonstrated that PBM (red and NIR light) delivered to the abdomen in mice, can alter the gut microbiome in a potentially beneficial way. This has also now been demonstrated in human subjects. Conclusions: In consideration of the known effects of PBM on metabolomics, and the now demonstrated effects of PBM on the microbiome, as well as other effects of light on the microbiome, including modulating circadian rhythms, the present perspective introduces a new term "photobiomics" and looks forward to the application of PBM to influence the microbiome in humans. Some mechanisms by which this phenomenon might occur are considered
A randomized placebo-controlled study of a transcranial photobiomodulation helmet in Parkinson’s disease : post-hoc analysis of motor outcomes
Emerging evidence is increasingly supporting the use of transcranial photobiomodulation (tPBM) to improve symptoms of neurodegenerative diseases, including Parkinson’s disease (PD). The objective of this study was to analyse the safety and efficacy of tPBM for PD motor symptoms. The study was a triple blind, randomized placebo-controlled trial with 40 idiopathic PD patients receiving either active tPBM (635 nm plus 810 nm LEDs) or sham tPBM for 24 min per day (56.88J), six days per week, for 12 weeks. The primary outcome measures were treatment safety and a 37-item MDS-UPDRS-III (motor domain) assessed at baseline and 12 weeks. Individual MDS-UPDRS-III items were clustered into sub-score domains (facial, upper-limb, lower-limb, gait, and tremor). The treatment produced no safety concerns or adverse events, apart from occasional temporary and minor dizziness. There was no significant difference in total MDS-UPDRS-III scores between groups, presumably due to the placebo effect. Additional analyses demonstrated that facial and lower-limb sub-scores significantly improved with active treatment, while gait and lower-limb sub-scores significantly improved with sham treatment. Approximately 70% of participants responded to active treatment (≥5 decrease in MDS-UPDRS-III score) and improved in all sub-scores, while sham responders improved in lower-limb sub-scores only. tPBM appears to be a safe treatment and improved several PD motor symptoms in patients that responded to treatment. tPBM is proving to be increasingly attractive as a possible non-pharmaceutical adjunct therapy
Highly Elevated Serum Hepcidin in Patients with Acute Myeloid Leukemia prior to and after Allogeneic Hematopoietic Cell Transplantation: Does This Protect from Excessive Parenchymal Iron Loading?
Hepcidin is upregulated by inflammation and iron. Inherited (HFE genotype) and treatment-related factors (blood units (BU), Iron overload) affecting hepcidin (measured by C-ELISA) were studied in 42 consecutive patients with AML prior to and after allogeneic hematopoietic cell transplantation (HCT). Results. Elevated serum ferritin pre- and post-HCT was present in all patients. Median hepcidin pre- and post-HCT of 358 and 398 ng/mL, respectively, were elevated compared to controls (median 52 ng/mL) (P<.0001). Liver and renal function, prior chemotherapies, and conditioning had no impact on hepcidin. Despite higher total BU after HCT compared to pretransplantation (P<.0005), pre- and posttransplant ferritin and hepcidin were similar. BU influenced ferritin (P=.001) and hepcidin (P=.001). No correlation of pre- or posttransplant hepcidin with pretransplant ferritin was found. HFE genotype did not influence hepcidin. Conclusions. Hepcidin is elevated in AML patients pre- and post-HCT due to transfusional iron-loading suggesting that hepcidin synthesis remains intact despite chemotherapy and HCT
Multicenter evaluation of the Xpert Norovirus assay for detection of norovirus genogroups I and II in fecal specimens
Norovirus is the most common cause of sporadic gastroenteritis and outbreaks worldwide. The rapid identification of norovirus has important implications for infection prevention measures and may reduce the need for additional diagnostic testing. The Xpert Norovirus assay recently received FDA clearance for the detection and differentiation of norovirus genogroups I and II (GI and GII), which account for the vast majority of infections. In this study, we evaluated the performance of the Xpert Norovirus assay with both fresh, prospectively collected ( n = 914) and frozen, archived ( n = 489) fecal specimens. A Centers for Disease Control and Prevention (CDC) composite reference method was used as the gold standard for comparison. For both prospective and frozen specimens, the Xpert Norovirus assay showed positive percent agreement (PPA) and negative percent agreement (NPA) values of 98.3% and 98.1% for GI and of 99.4% and 98.2% for GII, respectively. Norovirus prevalence in the prospective specimens (collected from March to May of 2014) was 9.9% ( n = 90), with the majority of positives caused by genogroup II (82%, n = 74). The positive predictive value (PPV) of the Xpert Norovirus assay was 75% for GI-positive specimens, whereas it was 86.5% for GII-positive specimens. The negative predictive values (NPV) for GI and GII were 100% and 99.9%, respectively
Highly Elevated Serum Hepcidin in Patients with Acute Myeloid Leukemia prior to and after Allogeneic Hematopoietic Cell Transplantation: Does This Protect from Excessive Parenchymal Iron Loading?
Hepcidin is upregulated by inflammation and iron. Inherited (HFE genotype) and treatment-related factors (blood units (BU), Iron overload) affecting hepcidin (measured by C-ELISA) were studied in 42 consecutive patients with AML prior to and after allogeneic hematopoietic cell transplantation (HCT). Results. Elevated serum ferritin pre-and post-HCT was present in all patients. Median hepcidin pre-and post-HCT of 358 and 398 ng/mL, respectively, were elevated compared to controls (median 52 ng/mL) (P < .0001). Liver and renal function, prior chemotherapies, and conditioning had no impact on hepcidin. Despite higher total BU after HCT compared to pretransplantation (P < .0005), pre-and posttransplant ferritin and hepcidin were similar. BU influenced ferritin (P = .001) and hepcidin (P = .001). No correlation of pre-or posttransplant hepcidin with pretransplant ferritin was found. HFE genotype did not influence hepcidin. Conclusions. Hepcidin is elevated in AML patients pre-and post-HCT due to transfusional iron-loading suggesting that hepcidin synthesis remains intact despite chemotherapy and HCT
The effect of photobiomodulation on the brain during wakefulness and sleep
Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton – ultra-weak light emission – network of communication and repair across the brain
- …