215 research outputs found

    Spatiotemporal Regularity in Networks with Stochastically Varying Links

    Full text link
    In this work we investigate time varying networks with complex dynamics at the nodes. We consider two scenarios of network change in an interval of time: first, we have the case where each link can change with probability pt, i.e. the network changes occur locally and independently at each node. Secondly we consider the case where the entire connectivity matrix changes with probability pt, i.e. the change is global. We show that network changes, occurring both locally and globally, yield an enhanced range of synchronization. When the connections are changed slowly (i.e. pt is low) the nodes display nearly synchronized intervals interrupted by intermittent unsynchronized chaotic bursts. However when the connections are switched quickly (i.e. pt is large), the intermittent behavior quickly settles down to a steady synchronized state. Furthermore we find that the mean time taken to reach synchronization from generic random initial states is significantly reduced when the underlying links change more rapidly. We also analyze the probabilistic dynamics of the system with changing connectivity and the stable synchronized range thus obtained is in broad agreement with those observed numerically.Comment: 15 pages, 8 figures, Keywords: Complex Networks, Temporal Networks, Synchronization, Coupled Map Lattic

    Sequence-specific sequence comparison using pairwise statistical significance

    Get PDF
    Sequence comparison is one of the most fundamental computational problems in bioinformatics for which many approaches have been and are still being developed. In particular, pairwise sequence alignment forms the crux of both DNA and protein sequence comparison techniques, which in turn forms the basis of many other applications in bioinformatics. Pairwise sequence alignment methods align two sequences using a substitution matrix consisting of pairwise scores of aligning different residues with each other (like BLOSUM62), and give an alignment score for the given sequence-pair. The biologists routinely use such pairwise alignment programs to identify similar, or more specifically, related sequences (having common ancestor). It is widely accepted that the relatedness of two sequences is better judged by statistical significance of the alignment score rather than by the alignment score alone. This research addresses the problem of accurately estimating statistical significance of pairwise alignment for the purpose of identifying related sequences, by making the sequence comparison process more sequence-specific. The major contributions of this research work are as follows. Firstly, using sequence-specific strategies for pairwise sequence alignment in conjunction with sequence-specific strategies for statistical significance estimation, wherein accurate methods for pairwise statistical significance estimation using standard, sequence-specific, and position-specific substitution matrices are developed. Secondly, using pairwise statistical significance to improve the performance of the most popular database search program PSI-BLAST. Thirdly, design and implementation of heuristics to speed-up pairwise statistical significance estimation by an factor of more than 200. The implementation of all the methods developed in this work is freely available online. With the all-pervasive application of sequence alignment methods in bioinformatics using the ever-increasing sequence data, this work is expected to offer useful contributions to the research community

    STABILITY ANALYSIS OF AN SIR EPIDEMIC MODEL WITH SPECIFIC NONLINER INCIDENCE RATE

    Get PDF
    We study an SIR epidemic model with a specific non linear incidence rate function. The stability of the disease-free equilibrium and the endemic equilibrium are found and an appropriate Dulac function was constructed for investigating the global stability of an endemic equilibrium. We illustrate the theoretical results by carrying numerical simulation. Keywords: epidemic, nonlinear incidence, inhibitory effect, disease-free equilibrium, endemic equilibrium, global stability. 2010 AMS Subject Classification: 92D30, 93A30, 93D30, 34D23

    Analysis of Dynamic Memory Bandwidth Regulation in Multi-core Real-Time Systems

    Full text link
    One of the primary sources of unpredictability in modern multi-core embedded systems is contention over shared memory resources, such as caches, interconnects, and DRAM. Despite significant achievements in the design and analysis of multi-core systems, there is a need for a theoretical framework that can be used to reason on the worst-case behavior of real-time workload when both processors and memory resources are subject to scheduling decisions. In this paper, we focus our attention on dynamic allocation of main memory bandwidth. In particular, we study how to determine the worst-case response time of tasks spanning through a sequence of time intervals, each with a different bandwidth-to-core assignment. We show that the response time computation can be reduced to a maximization problem over assignment of memory requests to different time intervals, and we provide an efficient way to solve such problem. As a case study, we then demonstrate how our proposed analysis can be used to improve the schedulability of Integrated Modular Avionics systems in the presence of memory-intensive workload.Comment: Accepted for publication in the IEEE Real-Time Systems Symposium (RTSS) 2018 conferenc

    Leveraging Traceability to Integrate Safety Analysis Artifacts into the Software Development Process

    Full text link
    Safety-critical system's failure or malfunction can cause loss of human lives or damage to the physical environment; therefore, continuous safety assessment is crucial for such systems. In many domains this includes the use of Safety assurance cases (SACs) as a structured argument that the system is safe for use. SACs can be challenging to maintain during system evolution due to the disconnect between the safety analysis and system development process. Further, safety analysts often lack domain knowledge and tool support to evaluate the SAC. We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models, and then uses these connections to visualize the change. We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety. We present new traceability techniques for closer integration of the safety analysis and system development process, and illustrate the viability of our approach using examples from a cyber-physical system that deploys Unmanned Aerial Vehicles for emergency response
    • …
    corecore