101 research outputs found
Nonlinear Self-Trapping of Matter Waves in Periodic Potentials
We report the first experimental observation of nonlinear self-trapping of
Bose-condensed 87Rb atoms in a one dimensional waveguide with a superimposed
deep periodic potential . The trapping effect is confirmed directly by imaging
the atomic spatial distribution. Increasing the nonlinearity we move the system
from the diffusive regime, characterized by an expansion of the condensate, to
the nonlinearity dominated self-trapping regime, where the initial expansion
stops and the width remains finite. The data are in quantitative agreement with
the solutions of the corresponding discrete nonlinear equation. Our results
reveal that the effect of nonlinear self-trapping is of local nature, and is
closely related to the macroscopic self-trapping phenomenon already predicted
for double-well systems.Comment: 5 pages, 4 figure
Bright gap solitons of atoms with repulsive interaction
We report on the first experimental observation of bright matter-wave
solitons for 87Rb atoms with repulsive atom-atom interaction. This counter
intuitive situation arises inside a weak periodic potential, where anomalous
dispersion can be realized at the Brillouin zone boundary. If the coherent
atomic wavepacket is prepared at the corresponding band edge a bright soliton
is formed inside the gap. The strength of our system is the precise control of
preparation and real time manipulation, allowing the systematic investigation
of gap solitons.Comment: 4 pages, 4 figure
Interaction of matter-wave gap solitons in optical lattices
We study mobility and interaction of gap solitons in a Bose-Einstein
condensate (BEC) confined by an optical lattice potential. Such localized
wavepackets can exist only in the gaps of the matter-wave band-gap spectrum and
their interaction properties are shown to serve as a measure of discreteness
imposed onto a BEC by the lattice potential. We show that inelastic collisions
of two weakly localized near-the-band-edge gap solitons provide simple and
effective means for generating strongly localized in-gap solitons through
soliton fusion.Comment: 12 pages, 7 figure
Somatostatin receptor scintigraphy in cutaneous malignant lymphomas
Background: Lymphoid cells may express somatostatin receptors (SS-Rs) on their cell surface.
Therefore radiolabeled somatostalin analogues may be used to visualize SS-R-positive
lymphoid neoplasms in vivo. Exact staging is the basis for treatment decisions in cutaneous
malignant lymphoma. We considered the possibility that SS-R scintigraphy might offer a
clinically useful method of diagnostic imaging in patients with cutaneous malignant
lymphoma.
Objective: We evaluated SS-R scintigraphy in comparison with conventional staging methods
in the staging of cutaneous malignant lymphoma.
Methods: We conducted a prospective study in 14 consecutive patients with histologically
proven cutaneous malignant lymphoma. SS-R scintigraphy was compared with physical, radiologic,
and bone marrow examinations. Lymph node excisions were performed in patients
with palpable lymph nodes.
Results: SS-R scintigraphy was positive in the lymph nodes in all four patients with malignant
lymph node infiltration and negative in the three patients with dermatopathic lymphadenopathy.
In two patients, previously unsuspected lymphoma localizations were visualized by
SS-R scintigraphy. In only three patients all skin lesions were visualized by SS-R scintigraphy;
these three patients had not been treated with topical corticosteroids. SS-R scintigraphy
failed to detect an adrenal mass in one patient and bone marrow infiltration in two patients.
Conclusion: SS-R scintigraphy may help distinguish dermatopathic lymphadenopathy from
malignant lymph node infiltration in patients with cutaneous malignant lymphoma
Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps
We study the dynamics of nonlinear localized excitations (solitons) in
two-dimensional (2D) Bose-Einstein condensates (BECs) with repulsive
interactions, loaded into an optical lattice (OL), which is combined with an
external parabolic potential. First, we demonstrate analytically that a broad
(loosely bound, LB) soliton state, based on a 2D Bloch function near the edge
of the Brillouin zone (BZ), has a negative effective mass (while the mass of a
localized state is positive near the BZ center). The negative-mass soliton
cannot be held by the usual trap, but it is safely confined by an inverted
parabolic potential (anti-trap). Direct simulations demonstrate that the LB
solitons (including the ones with intrinsic vorticity) are stable and can
freely move on top of the OL. The frequency of elliptic motion of the
LB-soliton's center in the anti-trapping potential is very close to the
analytical prediction which treats the solition as a quasi-particle. In
addition, the LB soliton of the vortex type features real rotation around its
center. We also find an abrupt transition, which occurs with the increase of
the number of atoms, from the negative-mass LB states to tightly bound (TB)
solitons. An estimate demonstrates that, for the zero-vorticity states, the
transition occurs when the number of atoms attains a critical number N=10^3,
while for the vortex the transition takes place at N=5x10^3 atoms. The
positive-mass LB states constructed near the BZ center (including vortices) can
move freely too. The effects predicted for BECs also apply to optical spatial
solitons in bulk photonic crystals.Comment: 17 pages, 12 figure
Dynamics of positive- and negative-mass solitons in optical lattices and inverted traps
We study the dynamics of one-dimensional solitons in the attractive and
repulsive Bose-Einstein condensates (BECs) loaded into an optical lattice (OL),
which is combined with an external parabolic potential. First, we demonstrate
analytically that, in the repulsive BEC, where the soliton is of the gap type,
its effective mass is \emph{negative}. This gives rise to a prediction for the
experiment: such a soliton cannot be not held by the usual parabolic trap, but
it can be captured (performing harmonic oscillations) by an anti-trapping
inverted parabolic potential. We also study the motion of the soliton a in long
system, concluding that, in the cases of both the positive and negative mass,
it moves freely, provided that its amplitude is below a certain critical value;
above it, the soliton's velocity decreases due to the interaction with the OL.
At a late stage, the damped motion becomes chaotic. We also investigate the
evolution of a two-soliton pulse in the attractive model. The pulse generates a
persistent breather, if its amplitude is not too large; otherwise, fusion into
a single fundamental soliton takes place. Collisions between two solitons
captured in the parabolic trap or anti-trap are considered too. Depending on
their amplitudes and phase difference, the solitons either perform stable
oscillations, colliding indefinitely many times, or merge into a single
soliton. Effects reported in this work for BECs can also be formulated for
optical solitons in nonlinear photonic crystals. In particular, the capture of
the negative-mass soliton in the anti-trap implies that a bright optical
soliton in a self-defocusing medium with a periodic structure of the refractive
index may be stable in an anti-waveguide.Comment: 22pages, 9 figures, submitted to Journal of Physics
A bimetallic nanoantenna for directional colour routing
Recent progress in nanophotonics includes demonstrations of meta-materials displaying negative refraction at optical frequencies, directional single photon sources, plasmonic analogies of electromagnetically induced transparency and spectacular Fano resonances. The physics behind these intriguing effects is to a large extent governed by the same single parameter—optical phase. Here we describe a nanophotonic structure built from pairs of closely spaced gold and silver disks that show phase accumulation through material-dependent plasmon resonances. The bimetallic dimers show exotic optical properties, in particular scattering of red and blue light in opposite directions, in spite of being as compact as ∼λ3/100. These spectral and spatial photon-sorting nanodevices can be fabricated on a wafer scale and offer a versatile platform for manipulating optical response through polarization, choice of materials and geometrical parameters, thereby opening possibilities for a wide range of practical applications
Design and Validation of a Novel Method to Measure Cross-Sectional Area of Neck Muscles Included during Routine MR Brain Volume Imaging
Low muscle mass secondary to disease and ageing is an important cause of excess mortality and morbidity. Many studies include a MR brain scan but no peripheral measure of muscle mass. We developed a technique to measure posterior neck muscle cross-sectional area (CSA) on volumetric MR brain scans enabling brain and muscle size to be measured simultaneously.We performed four studies to develop and test: feasibility, inter-rater reliability, repeatability and external validity. We used T1-weighted MR brain imaging from young and older subjects, obtained on different scanners, and collected mid-thigh MR data.After developing the technique and demonstrating feasibility, we tested it for inter-rater reliability in 40 subjects. Intraclass correlation coefficients (ICC) between raters were 0.99 (95% confidence intervals (CI) 0.98-1.00) for the combined group (trapezius, splenius and semispinalis), 0.92 (CI 0.85-0.96) for obliquus and 0.92 (CI 0.85-0.96) for sternocleidomastoid. The first unrotated principal component explained 72.2% of total neck muscle CSA variance and correlated positively with both right (r = 0.52, p = .001) and left (r = 0.50, p = .002) grip strength. The 14 subjects in the repeatability study had had two MR brain scans on three different scanners. The ICC for between scanner variation for total neck muscle CSA was high at 0.94 (CI 0.86-0.98). The ICCs for within scanner variations were also high, with values of 0.95 (CI 0.86-0.98), 0.97 (CI 0.92-0.99) and 0.96 (CI 0.86-0.99) for the three scanners. The external validity study found a correlation coefficient for total thigh CSA and total neck CSA of 0.88.We present a feasible, valid and reliable method for measuring neck muscle CSA on T1-weighted MR brain scans. Larger studies are needed to validate and apply our technique with subjects differing in age, ethnicity and geographical location
- …