3,019 research outputs found

    Nonlinear Self-Trapping of Matter Waves in Periodic Potentials

    Full text link
    We report the first experimental observation of nonlinear self-trapping of Bose-condensed 87Rb atoms in a one dimensional waveguide with a superimposed deep periodic potential . The trapping effect is confirmed directly by imaging the atomic spatial distribution. Increasing the nonlinearity we move the system from the diffusive regime, characterized by an expansion of the condensate, to the nonlinearity dominated self-trapping regime, where the initial expansion stops and the width remains finite. The data are in quantitative agreement with the solutions of the corresponding discrete nonlinear equation. Our results reveal that the effect of nonlinear self-trapping is of local nature, and is closely related to the macroscopic self-trapping phenomenon already predicted for double-well systems.Comment: 5 pages, 4 figure

    Solitons on H-bonds in proteins

    Full text link
    A model for soliton dynamics on a hydrogen-bond network in helical proteins is proposed. It employs in three dimensions the formalism of fully integrable Toda lattices which admits phonons as well as solitons along the hydrogen-bonds of the helices. A simulation of the three dimensional Toda lattice system shows that the solitons are spontaneously created and are stable and moving along the helix axis. A perturbation on one of the three H-bond lines forms solitons on the other H-bonds as well. The robust solitary wave may explain very long-lived modes in the frequency range of 100 cm−1^{-1} which are found in recent X-ray laser experiments. The dynamics parameters of the Toda lattice are in accordance with the usual Lennard-Jones parameters used for realistic H-bond potentials in proteins.Comment: 6 pages, 7 figure

    Nucleosomes in serum as a marker for cell death

    Get PDF
    The concentration of nucleosomes is elevated in blood of patients with diseases which are associated with enhanced cell death. In order to detect these circulating nucleosomes, we used the Cell Death Detection-ELISA(Plus) (CDDE) from Roche Diagnostics (Mannheim, Germany) (details at http:\textbackslash{}\textbackslash{}biochem.roche.com). For its application in liquid materials we performed various modifications: we introduced a standard curve with nucleosome-rich material, which enabled direct quantification and improved comparability of the values within (CVinterassay:3.0-4.1%) and between several runs (CVinterassay:8.6-13.5%), and tested the analytical specificity of the ELISA. Because of the fast elimination of nucleosomes from circulation and their limited stability, we compared plasma and serum matrix and investigated in detail the pre-analytical handling of serum samples which can considerably influence the test results. Careless venipuncture producing hemolysis, delayed centrifugation and bacterial contamination of the blood samples led to false-positive results; delayed stabilization with EDTA and insufficient storage conditions resulted in false-negative values. At temperatures of -20 degreesC, serum samples which were treated with 10 mM EDTA were stable for at least 6 months. In order to avoid possible interfering factors, we recommend a schedule for the pre-analytical handling of the samples. As the first stage, the possible clinical application was investigated in the sera of 310 persons. Patients with solid tumors (n = 220; mean = 361 Arbitrary Units (AU)) had considerably higher values than healthy persons (n = 50; mean = 30 AU; P = 0.0001) and patients with inflammatory diseases (n = 40; mean = 296 AU; p = 0.096). Within the group of patients with tumors, those in advanced stages (UICC 4) showed significantly higher values than those in early stages (UICC 1-3) (P = 0.0004)

    Interaction of matter-wave gap solitons in optical lattices

    Full text link
    We study mobility and interaction of gap solitons in a Bose-Einstein condensate (BEC) confined by an optical lattice potential. Such localized wavepackets can exist only in the gaps of the matter-wave band-gap spectrum and their interaction properties are shown to serve as a measure of discreteness imposed onto a BEC by the lattice potential. We show that inelastic collisions of two weakly localized near-the-band-edge gap solitons provide simple and effective means for generating strongly localized in-gap solitons through soliton fusion.Comment: 12 pages, 7 figure

    Risk factors during first 1,000 days of life for carotid intima-media thickness in infants, children, and adolescents: A systematic review with meta-analyses.

    Get PDF
    The first 1,000 days of life, i.e., from conception to age 2 years, could be a critical period for cardiovascular health. Increased carotid intima-media thickness (CIMT) is a surrogate marker of atherosclerosis. We performed a systematic review with meta-analyses to assess (1) the relationship between exposures or interventions in the first 1,000 days of life and CIMT in infants, children, and adolescents; and (2) the CIMT measurement methods. Systematic searches of Medical Literature Analysis and Retrieval System Online (MEDLINE), Excerpta Medica database (EMBASE), and Cochrane Central Register of Controlled Trials (CENTRAL) were performed from inception to March 2019. Observational and interventional studies evaluating factors at the individual, familial, or environmental levels, for instance, size at birth, gestational age, breastfeeding, mode of conception, gestational diabetes, or smoking, were included. Quality was evaluated based on study methodological validity (adjusted Newcastle-Ottawa Scale if observational; Cochrane collaboration risk of bias tool if interventional) and CIMT measurement reliability. Estimates from bivariate or partial associations that were least adjusted for sex were used for pooling data across studies, when appropriate, using random-effects meta-analyses. The research protocol was published and registered on the International Prospective Register of Systematic Reviews (PROSPERO; CRD42017075169). Of 6,221 reports screened, 50 full-text articles from 36 studies (34 observational, 2 interventional) totaling 7,977 participants (0 to 18 years at CIMT assessment) were retained. Children born small for gestational age had increased CIMT (16 studies, 2,570 participants, pooled standardized mean difference (SMD): 0.40 (95% confidence interval (CI): 0.15 to 0.64, p: 0.001), I2: 83%). When restricted to studies of higher quality of CIMT measurement, this relationship was stronger (3 studies, 461 participants, pooled SMD: 0.64 (95% CI: 0.09 to 1.19, p: 0.024), I2: 86%). Only 1 study evaluating small size for gestational age was rated as high quality for all methodological domains. Children conceived through assisted reproductive technologies (ART) (3 studies, 323 participants, pooled SMD: 0.78 (95% CI: -0.20 to 1.75, p: 0.120), I2: 94%) or exposed to maternal smoking during pregnancy (3 studies, 909 participants, pooled SMD: 0.12 (95% CI: -0.06 to 0.30, p: 0.205), I2: 0%) had increased CIMT, but the imprecision around the estimates was high. None of the studies evaluating these 2 factors was rated as high quality for all methodological domains. Two studies evaluating the effect of nutritional interventions starting at birth did not show an effect on CIMT. Only 12 (33%) studies were at higher quality across all domains of CIMT reliability. The degree of confidence in results is limited by the low number of high-quality studies, the relatively small sample sizes, and the high between-study heterogeneity. In our meta-analyses, we found several risk factors in the first 1,000 days of life that may be associated with increased CIMT during childhood. Small size for gestational age had the most consistent relationship with increased CIMT. The associations with conception through ART or with smoking during pregnancy were not statistically significant, with a high imprecision around the estimates. Due to the large uncertainty in effect sizes and the limited quality of CIMT measurements, further high-quality studies are needed to justify intervention for primordial prevention of cardiovascular disease (CVD)

    The matrix Kadomtsev--Petviashvili equation as a source of integrable nonlinear equations

    Full text link
    A new integrable class of Davey--Stewartson type systems of nonlinear partial differential equations (NPDEs) in 2+1 dimensions is derived from the matrix Kadomtsev--Petviashvili equation by means of an asymptotically exact nonlinear reduction method based on Fourier expansion and spatio-temporal rescaling. The integrability by the inverse scattering method is explicitly demonstrated, by applying the reduction technique also to the Lax pair of the starting matrix equation and thereby obtaining the Lax pair for the new class of systems of equations. The characteristics of the reduction method suggest that the new systems are likely to be of applicative relevance. A reduction to a system of two interacting complex fields is briefly described.Comment: arxiv version is already officia
    • 

    corecore