14 research outputs found

    Adaptive Aggregation of Peptide Model Systems

    Full text link
    Jet-cooled infrared spectra of acetylated glycine, alanine, and dialanine esters and their dimers are reported in the amide A and amide I–III regions. They serve as particularly simple peptide aggregation models and are found to prefer a single backbone conformation in the dimer that is different from the most stable monomer backbone conformation. In the case of alanine, evidence for topology-changing chirality discrimination upon dimer formation is found. The jet spectroscopic results are compared to gas phase spectra and quantum chemical calculations. They provide reliable benchmarks for the evaluation of the latter in the field of peptide interactions

    Aromatic embedding wins over classical hydrogen bonding – a multi-spectroscopic approach for the diphenyl ether–methanol complex

    Full text link
    Dispersion interactions are omnipresent in intermolecular interactions, but their respective contributions are difficult to predict. Aromatic ethers offer competing docking sites for alcohols: the ether oxygen as a well known hydrogen bond acceptor, but also the aromatic π system. The interaction with two aromatic moieties in diphenyl ether can tip the balance towards π binding. We use a multi-spectroscopic approach to study the molecular recognition, the structure and internal dynamics of the diphenyl ether–methanol complex, employing infrared, infrared-ultraviolet and microwave spectroscopy. We find that the conformer with the hydroxy group of the alcohol binding to one aromatic π cloud and being coordinated by an aromatic C–H bond of the other phenyl group is preferred. Depending on the expansion conditions in the supersonic jet, we observe a second conformer, which exhibits a hydrogen bond to the ether oxygen and is higher in energy

    Applications of Friedel–Crafts reactions in total synthesis of natural products

    Full text link

    CARBON—CARBON BOND FORMING REACTIONS

    Full text link

    Optimization of adsorptive removal of α-toluic acid by CaO2 nanoparticles using response surface methodology

    Get PDF
    The present work addresses the optimization of process parameters for adsorptive removal of α-toluic acid by calcium peroxide (CaO2) nanoparticles using response surface methodology (RSM). CaO2 nanoparticles were synthesized by chemical precipitation method and confirmed by Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analysis which shows the CaO2 nanoparticles size range of 5–15 nm. A series of batch adsorption experiments were performed using CaO2 nanoparticles to remove α-toluic acid from the aqueous solution. Further, an experimental based central composite design (CCD) was developed to study the interactive effect of CaO2 adsorbent dosage, initial concentration of α-toluic acid, and contact time on α-toluic acid removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was performed to determine the significance of the individual and the interactive effects of variables on the response. The model predicted response showed a good agreement with the experimental response, and the coefficient of determination, (R2) was 0.92. Among the variables, the interactive effect of adsorbent dosage and the initial α-toluic acid concentration was found to have more influence on the response than the contact time. Numerical optimization of process by RSM showed the optimal adsorbent dosage, initial concentration of α-toluic acid, and contact time as 0.03 g, 7.06 g/L, and 34 min respectively. The predicted removal efficiency was 99.50%. The experiments performed under these conditions showed α-toluic acid removal efficiency up to 98.05%, which confirmed the adequacy of the model prediction

    Suicidal ideation in a European Huntington's disease population.

    Full text link

    Cognitive decline in Huntington's disease expansion gene carriers

    Full text link
    corecore