Abstract

Jet-cooled infrared spectra of acetylated glycine, alanine, and dialanine esters and their dimers are reported in the amide A and amide I–III regions. They serve as particularly simple peptide aggregation models and are found to prefer a single backbone conformation in the dimer that is different from the most stable monomer backbone conformation. In the case of alanine, evidence for topology-changing chirality discrimination upon dimer formation is found. The jet spectroscopic results are compared to gas phase spectra and quantum chemical calculations. They provide reliable benchmarks for the evaluation of the latter in the field of peptide interactions

    Similar works

    Full text

    thumbnail-image

    Available Versions