5 research outputs found

    N-cadherin promoter polymorphisms and risk of osteoarthritis

    Get PDF
    Osteoarthritis (OA) is the most common form of arthritis. It is characterized by cartilage destruction and bone remodeling, mediated in part by synovial fibroblasts (SFs). Given the functional significance of cadherins in these cells, we aimed at determining the role of genetic variants of N-cadherin (CDH2) in OA of the knee and hip. Six single-nucleotide polymorphisms in the genomic region of the CDH2 gene were genotyped in 312 patients with OA and 259 healthy control subjects. Gene expression of CDH2 was analyzed by qRT-PCR. Liquid chromatography-mass spectrometry was used to identify a transcription factor isolated by DNA pulldown. Its potential for binding to gene variants was examined by electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, and chromatin immunoprecipitation. Genetic analysis identified a polymorphism located in the CDH2 promoter region to be associated with risk of OA. The minor allele of rs11564299 had a protective effect against OA. Compared to carriers of the major allele, carriers of the minor allele of rs11564299 displayed increased N-cadherin levels in SFs. Based on in silico analysis, the minor allele was predicted to generate a novel transcription factor binding site, Direct-binding assays and mass spectrometric analysis identified hnRNP K as binding selectively to the minor allele. In summary, a CDH2 promoter polymorphism influences the risk of OA, and hnRNP K was found to be involved in the regulation of elevated N-cadherin expression in patients with OA carrying the minor allele of rs11564299

    Robo3A and Robo3B expression is regulated via alternative promoters and mRNA stability

    No full text
    Background The transmembrane receptor family Roundabout (Robo) was described to have an essential role in the developing nervous system. Recent studies demonstrated that Robo3 shows an altered expression in rheumatoid arthritis as well as in melanoma. Context and purpose of the study Until today no detailed studies of the two Robo3 isoforms (Robo3A and Robo3B) and their roles in rheumatoid arthritis synovial fibroblasts, respectively malignant melanoma are available. To get a better understanding regarding the role of Robo3A and Robo3B in the molecular process of rheumatoid arthritis and melanoma the exact characterization of expression and regulation is object of this study. Results mRNA and protein expression of the transcriptional variants were analyzed by quantitative RT-PCR respectively western blotting and revealed particularly enhanced expression of Robo3B in rheumatoid arthritis and melanoma. Promoter assays and inhibitor studies also disclosed that there is apparently a cell- and isoform-specific regulation of the Robo3 expression. Finally, dissimilar mRNA stabilities of Robo3A and Robo3B are identified as decisive posttranscriptional gene expression control. Conclusion In summary, this study supported an isotype specific role of Robo3B in disease hinting to different functional roles of each isoform
    corecore