13 research outputs found

    The Xenometabolome and Novel Contaminant Markers in Fish Exposed to a Wastewater Treatment Works Effluent

    No full text
    Organisms exposed to wastewater treatment works (WwTW) effluents accumulate complex mixtures of xenobiotics but there is a scarcity of information on the nature and impacts of these chemical mixtures. We applied metabolomics techniques as a novel approach to identify xenobiotics and their metabolites (the xenometabolome) that bioconcentrate in fish exposed to a WwTW effluent. Exposed juvenile rainbow trout (<i>Oncorhynchus mykiss</i>) accumulated surfactants, naphthols, chlorinated xylenols, and phenoxyphenols, chlorophenes, resin acids, mefenamic acid, oxybenzone, and steroidal alkaloids in the bile or plasma, and there were perturbations in the plasma concentrations of bile acids and lipids. Exposure of adult roach (<i>Rutilus rutilus</i>) to 50% or 100% concentrations of the same effluent resulted in dose-dependent increases in plasma concentrations of xenometabolites as well as cyprinol sulfate and taurocholic acid, lysophospholipids, and a decrease in sphingosine levels (a key component of cell membrane lipids). Our findings reveal the highly complex nature of xenobiotics accumulating in effluent-exposed fish, and the great potential of metabolomics for both identifying plasma marker (bio)­chemicals for monitoring exposure to wastewater effluents, and for targeting studies on potential consequent impacts on fish health

    Effects of Exposure to WwTW Effluents over Two Generations on Sexual Development and Breeding in Roach <i>Rutilus rutilus</i>

    No full text
    Exposure to environmental estrogens in wastewater treatment works (WwTW) effluents induces feminized responses in male fish, including the development of eggs in male testes. However, the impacts on the offspring of exposed fish are not well understood. In this study, we examined whether roach (Rutilus rutilus) from mothers that had been exposed to an undiluted WwTW effluent from early life to sexual maturity had altered susceptibility to gonadal feminization and an impaired capacity to reproduce. For males from both WwTW effluent exposed mothers and dilution water exposed mothers, effluent exposure for up to 3 years and 9 months induced feminized male gonads, although the intersex condition was relatively mild. There was no difference in the severity of gonadal feminization in roach derived from either WwTW effluent exposed or dilution water exposed mothers. Furthermore, a breeding study revealed that roach with effluent-exposed mothers reproduced with an equal success as roach with mothers exposed to clean water. Roach exposed to the effluent for 3 years in this study were able to reproduce successfully. Our findings provide no evidence for impacts of WwTW effluent exposure on reproduction or gonadal disruption in roach down the female germ line and add to existing evidence that male roach with a mild intersex condition are able to breed competitively

    Metabolomics Reveals Target and Off-Target Toxicities of a Model Organophosphate Pesticide to Roach (Rutilus rutilus): Implications for Biomonitoring

    No full text
    The ability of targeted and nontargeted metabolomics to discover chronic ecotoxicological effects is largely unexplored. Fenitrothion, an organophosphate pesticide, is categorized as a “red list” pollutant, being particularly hazardous to aquatic life. It acts primarily as a cholinesterase inhibitor, but evidence suggests it can also act as an androgen receptor antagonist. Whole-organism fenitrothion-induced toxicity is well-established, but information regarding target and off-target molecular toxicities is limited. Here we study the molecular responses of male roach (Rutilus rutilus) exposed to fenitrothion, including environmentally realistic concentrations, for 28 days. Acetylcholine was assessed in brain; steroid metabolism was measured in testes and plasma; and NMR and mass spectrometry-based metabolomics were conducted on testes and liver to discover off-target toxicity. O-demethylation was confirmed as a major route of pesticide degradation. Fenitrothion significantly depleted acetylcholine, confirming its primary mode of action, and 11-ketotestosterone in plasma and cortisone in testes, showing disruption of steroid metabolism. Metabolomics revealed significant perturbations to the hepatic phosphagen system and previously undocumented effects on phenylalanine metabolism in liver and testes. On the basis of several unexpected molecular responses that were opposite to the anticipated acute toxicity, we propose that chronic pesticide exposure induces an adapting phenotype in roach, which may have considerable implications for interpreting molecular biomarker responses in field-sampled fish

    Metabolomics Reveals Target and Off-Target Toxicities of a Model Organophosphate Pesticide to Roach (Rutilus rutilus): Implications for Biomonitoring

    No full text
    The ability of targeted and nontargeted metabolomics to discover chronic ecotoxicological effects is largely unexplored. Fenitrothion, an organophosphate pesticide, is categorized as a “red list” pollutant, being particularly hazardous to aquatic life. It acts primarily as a cholinesterase inhibitor, but evidence suggests it can also act as an androgen receptor antagonist. Whole-organism fenitrothion-induced toxicity is well-established, but information regarding target and off-target molecular toxicities is limited. Here we study the molecular responses of male roach (Rutilus rutilus) exposed to fenitrothion, including environmentally realistic concentrations, for 28 days. Acetylcholine was assessed in brain; steroid metabolism was measured in testes and plasma; and NMR and mass spectrometry-based metabolomics were conducted on testes and liver to discover off-target toxicity. O-demethylation was confirmed as a major route of pesticide degradation. Fenitrothion significantly depleted acetylcholine, confirming its primary mode of action, and 11-ketotestosterone in plasma and cortisone in testes, showing disruption of steroid metabolism. Metabolomics revealed significant perturbations to the hepatic phosphagen system and previously undocumented effects on phenylalanine metabolism in liver and testes. On the basis of several unexpected molecular responses that were opposite to the anticipated acute toxicity, we propose that chronic pesticide exposure induces an adapting phenotype in roach, which may have considerable implications for interpreting molecular biomarker responses in field-sampled fish

    Bioassay-Directed Identification of Novel Antiandrogenic Compounds in Bile of Fish Exposed to Wastewater Effluents

    No full text
    The widespread occurrence of feminized male fish downstream of some UK Wastewater Treatment Works (WwTWs) has been associated with exposure to estrogenic and potentially antiandrogenic (AA) contaminants in the effluents. In this study, profiling of AA contaminants in WwTW effluents and fish was conducted using HPLC in combination with <i>in vitro</i> androgen receptor transcription screens. Analysis of extracts of wastewater effluents revealed complex profiles of AA activity comprising 21–53 HPLC fractions. Structures of bioavailable antiandrogens were identified by exposing rainbow trout to a WwTW effluent and profiling the bile for AA activity using yeast (anti-YAS) and mammalian-based (AR-CALUX) androgen receptor transcription screens. The predominant fractions with AA activity in both androgen receptor screens contained the germicides chlorophene and triclosan, and together these contaminants accounted for 51% of the total anti-YAS activity in the fish bile. Other AA compounds identified in bile included chloroxylenol, dichlorophene, resin acids, napthols, oxybenzone, 4-nonylphenol, and bisphenol A. Pure standards of these compounds were active in the androgen receptor screens at potencies relative to flutamide of between 0.1 and 13.0. Thus, we have identified, for the first time, a diverse range of AA chemicals in WwTWs that are bioavailable to fish and which need to be assessed for their risk to the reproductive health of these organisms and other aquatic biota

    Molecular Mechanisms of Toxicity of Silver Nanoparticles in Zebrafish Embryos

    No full text
    Silver nanoparticles cause toxicity in exposed organisms and are an environmental health concern. The mechanisms of silver nanoparticle toxicity, however, remain unclear. We examined the effects of exposure to silver in nano-, bulk-, and ionic forms on zebrafish embryos (<i>Danio rerio</i>) using a Next Generation Sequencing approach in an Illumina platform (High-Throughput SuperSAGE). Significant alterations in gene expression were found for all treatments and many of the gene pathways affected, most notably those associated with oxidative phosphorylation and protein synthesis, overlapped strongly between the three treatments indicating similar mechanisms of toxicity for the three forms of silver studied. Changes in oxidative phosphorylation indicated a down-regulation of this pathway at 24 h of exposure, but with a recovery at 48 h. This finding was consistent with a dose-dependent decrease in oxygen consumption at 24 h, but not at 48 h, following exposure to silver ions. Overall, our data provide support for the hypothesis that the toxicity caused by silver nanoparticles is principally associated with bioavailable silver ions in exposed zebrafish embryos. These findings are important in the evaluation of the risk that silver particles may pose to exposed vertebrate organisms
    corecore