3 research outputs found

    Cu<sub>0.89</sub>Zn<sub>0.11</sub>O, A New Peroxidase-Mimicking Nanozyme with High Sensitivity for Glucose and Antioxidant Detection

    No full text
    Nanomaterial-based enzyme mimetics (nanozymes) is an emerging field of research that promises to produce alternatives to natural enzymes for a variety of applications. The search for the most cost-effective and efficient inorganic nanomaterials, such as metal oxides, cannot be won by pristine CuO. However, unlike CuO, the Zn-doped CuO (Zn-CuO) nanoparticles reported in this paper reveal superior peroxidase-like enzyme activity. This places Zn-CuO in a good position to participate in a range of activities aimed at developing diverse enzyme applications. The peroxidase-like activity was tested and confirmed against various chromogenic substrates in the presence of H<sub>2</sub>O<sub>2</sub> and obeyed the Michaelisā€“Menten enzymatic pathway. The mechanism of enhanced enzymatic activity was proved by employing terephthalic acid as a fluorescence probe and by electron spin resonance. The nanozyme, when tested for the detection of glucose, showed a substantial enhancement in the detection selectivity. The limit of detection (LOD) was also decreased reaching a limit as low as 0.27 ppm. Such a low LOD has not been reported so far for the metal oxides without any surface modifications. Moreover, the nanozyme (Zn-CuO) was utilized to detect the three antioxidants tannic acid, tartaric acid, and ascorbic acid and the relative strength of their antioxidant capacity was compared

    Graphene-Based ā€œHot Plateā€ for the Capture and Destruction of the Herpes Simplex Virus Type 1

    No full text
    The study of graphene-based antivirals is still at a nascent stage and the photothermal antiviral properties of graphene have yet to be studied. Here, we design and synthesize sulfonated magnetic nanoparticles functionalized with reduced graphene oxide (SMRGO) to capture and photothermally destroy herpes simplex virus type 1 (HSV-1). Graphene sheets were uniformly anchored with spherical magnetic nanoparticles (MNPs) of varying size between āˆ¼5 and 25 nm. Fourier-transform infrared spectroscopy (FT-IR) confirmed the sulfonation and anchoring of MNPs on the graphene sheets. Upon irradiation of the composite with near-infrared light (NIR, 808 nm, 7 min), SMRGO (100 ppm) demonstrated superior (āˆ¼99.99%) photothermal antiviral activity. This was probably due to the capture efficiency, unique sheet-like structure, high surface area, and excellent photothermal properties of graphene. In addition, electrostatic interactions of MNPs with viral particles appear to play a vital role in the inhibition of viral infection. These results suggest that graphene composites may help to combat viral infections including, but not only, HSV-1
    corecore