235 research outputs found
Associations of Statin Use with Deep Surgical Site Infections and Late Non-Infectious Revision Surgeries in Patients Undergoing Orthopedic Surgery: A Clinical Cohort Study
Statins have multiple preventive properties. We investigate if a chronic perioperative statin medication for cardiovascular indications reduces deep orthopedic surgical site infections (SSI), and other late non-infectious complications, in adult patients. We performed a single-center cohort of primary orthopedic interventions 2014-2019; with the exclusion of infection surgery and diabetic foot surgery. Group comparisons with Cox regression analyses; with and without propensity-score matching (nearest neighbor approach). We included 20,088 interventions in 20,088 different patients (median age 53 years, 49% females, 5% diabetes mellitus). Among them, 2,486 episodes (12%) revealed a pre-operative statin therapy (222 different brands and doses). After a median follow-up of 11 months, 1,414 episodes needed a surgical revision: 158 (0.8%) due to deep SSI and 1256 (6.3%) for non-infectious reasons. In multivariate Cox regression analyses, statin use was unrelated to both SSI (hazard ratio (HR) 0.9; 95% confidence interval (CI) 0.6-1.4) and non-infectious complications (HR 1.1, 95%CI 0.9-1.3). We equally lacked associations when we associated deep SSIS with statin use for the subgroups of implant-related surgery (HR 0.8, 95%CI 0.4-1.6) or orthroplasties (HR 0.8, 95%CI 0.3-2.6), separately. Likewise, propensity-score matched analyses on the variable “statin” equally failed to alter these outcomes. In our large cohort study with 20,088 orthopedic interventions, we found no protective association of a statin medication on deep SSI risks; or on other late non-infectious complications requiring revision surgery.
Keywords
statin medication, orthopedic surgery, surgical site infection, revision surgery, epidemiolog
One-year safety and efficacy of mitapivat in sickle cell disease:follow-up results of a phase 2, open-label study
Targeting the primary pathogenic event of sickle cell disease (SCD), the polymerization of sickle hemoglobin (HbS), may prevent downstream clinical events. Mitapivat, an oral pyruvate kinase (PK) activator, has therapeutic potential by increasing adenosine triphosphate (ATP) and decreasing 2,3-diphosphoglycerate (2,3-DPG), a glycolytic red blood cell (RBC) intermediate. In the previously reported 8-week dose-finding period of this phase 2, investigator-initiated, open-label study, mitapivat was well tolerated and showed efficacy in SCD. Here, the 1-year fixed-dose extension period is reported in which 9 of 10 included patients (90%) aged ≥16 years with SCD (HbSS, HbS/β0, or HbS/β+) continued with mitapivat. Mostly mild treatment-emergent adverse events (AEs) (most commonly, transaminase increase and headache) were still reported. Apart from the reported nontreatment-related serious AE (SAE) of a urinary tract infection in the dose-finding period, 1 nontreatment-related SAE occurred in the fixed-dose extension period in a patient who died of massive pulmonary embolism due to COVID-19. Importantly, sustained improvement in Hb level (mean increase, 1.1 ± 0.7 g/dL; P = .0014) was seen, which was accompanied by decreases in markers of hemolysis. In addition, the annualized rate of vaso-occlusive events reduced significantly from a historic baseline of 1.33 ± 1.32 to 0.64 ± 0.87 (P = .0489) when combining the dose-finding period and fixed-dose extension period. Cellularly, the ATP:2,3-DPG ratio and Hb-oxygen affinity significantly increased and RBC sickling (point of sickling) nonsignificantly reduced. Overall, this study demonstrated 1-year safety and efficacy of treatment with mitapivat in SCD, supporting further evaluation in ongoing phase 2/3 study (RISE UP, NCT05031780). This trial was registered at https://www.clinicaltrialsregister.eu/as NL8517 and EudraCT 2019-003438-18.</p
Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease
Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p < 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p < 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment.</p
Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease
Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p < 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p < 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment.</p
One-year safety and efficacy of mitapivat in sickle cell disease: follow-up results of a phase 2, open-label study
Targeting the primary pathogenic event of sickle cell disease (SCD), the polymerization of sickle hemoglobin (HbS), may prevent downstream clinical events. Mitapivat, an oral pyruvate kinase (PK) activator, has therapeutic potential by increasing adenosine triphosphate (ATP) and decreasing 2,3-diphosphoglycerate (2,3-DPG), a glycolytic red blood cell (RBC) intermediate. In the previously reported 8-week dose-finding period of this phase 2, investigator-initiated, open-label study, mitapivat was well tolerated and showed efficacy in SCD. Here, the 1-year fixed-dose extension period is reported in which 9 of 10 included patients (90%) aged ≥16 years with SCD (HbSS, HbS/β0, or HbS/β+) continued with mitapivat. Mostly mild treatment-emergent adverse events (AEs) (most commonly, transaminase increase and headache) were still reported. Apart from the reported nontreatment-related serious AE (SAE) of a urinary tract infection in the dose-finding period, 1 nontreatment-related SAE occurred in the fixed-dose extension period in a patient who died of massive pulmonary embolism due to COVID-19. Importantly, sustained improvement in Hb level (mean increase, 1.1 ± 0.7 g/dL; P = .0014) was seen, which was accompanied by decreases in markers of hemolysis. In addition, the annualized rate of vaso-occlusive events reduced significantly from a historic baseline of 1.33 ± 1.32 to 0.64 ± 0.87 (P = .0489) when combining the dose-finding period and fixed-dose extension period. Cellularly, the ATP:2,3-DPG ratio and Hb-oxygen affinity significantly increased and RBC sickling (point of sickling) nonsignificantly reduced. Overall, this study demonstrated 1-year safety and efficacy of treatment with mitapivat in SCD, supporting further evaluation in ongoing phase 2/3 study (RISE UP, NCT05031780). This trial was registered at https://www.clinicaltrialsregister.eu/ as NL8517 and EudraCT 2019-003438-18
Metabolic blood profile and response to treatment with the pyruvate kinase activator mitapivat in patients with sickle cell disease
Mitapivat is an investigational, oral, small-molecule allosteric activator of pyruvate kinase (PK). PK is a regulatory glycolytic enzyme that is key in providing the red blood cell (RBC) with sufficient amounts of adenosine triphosphate (ATP). In sickle cell disease (SCD), decreased 2,3-DPG levels increase the oxygen affinity of hemoglobin, thereby preventing deoxygenation and polymerization of sickle hemoglobin. The PK activator mitapivat has been shown to decrease levels of 2,3-DPG and increase levels of ATP in RBCs in patients with SCD. In this phase 2, investigator-initiated, open-label study (https://www.clinicaltrialsregister.eu/ NL8517; EudraCT 2019-003438-18), untargeted metabolomics was used to explore the overall metabolic effects of 8-week treatment with mitapivat in the dose-finding period. In total, 1773 unique metabolites were identified in dried blood spots of whole blood from ten patients with SCD and 42 healthy controls (HCs). The metabolic phenotype of patients with SCD revealed alterations in 139/1773 (7.8%) metabolites at baseline when compared to HCs (false discovery rate-adjusted p < 0.05), including increases of (derivatives of) polyamines, purines, and acyl carnitines. Eight-week treatment with mitapivat in nine patients with SCD altered 85/1773 (4.8%) of the total metabolites and 18/139 (12.9%) of the previously identified altered metabolites in SCD (unadjusted p < 0.05). Effects were observed on a broad spectrum of metabolites and were not limited to glycolytic intermediates. Our results show the relevance of metabolic profiling in SCD, not only to unravel potential pathophysiological pathways and biomarkers in multisystem diseases but also to determine the effect of treatment
Outcome in patients perceived as receiving excessive care across different ethical climates: a prospective study in 68 intensive care units in Europe and the USA
Purpose: Whether the quality of the ethical climate in the intensive care unit (ICU) improves the identification of patients receiving excessive care and affects patient outcomes is unknown. Methods: In this prospective observational study, perceptions of excessive care (PECs) by clinicians working in 68 ICUs in Europe and the USA were collected daily during a 28-day period. The quality of the ethical climate in the ICUs was assessed via a validated questionnaire. We compared the combined endpoint (death, not at home or poor quality of life at 1 year) of patients with PECs and the time from PECs until written treatment-limitation decisions (TLDs) and death across the four climates defined via cluster analysis. Results: Of the 4747 eligible clinicians, 2992 (63%) evaluated the ethical climate in their ICU. Of the 321 and 623 patients not admitted for monitoring only in ICUs with a good (n = 12, 18%) and poor (n = 24, 35%) climate, 36 (11%) and 74 (12%), respectively were identified with PECs by at least two clinicians. Of the 35 and 71 identified patients with an available combined endpoint, 100% (95% CI 90.0–1.00) and 85.9% (75.4–92.0) (P = 0.02) attained that endpoint. The risk of death (HR 1.88, 95% CI 1.20–2.92) or receiving a written TLD (HR 2.32, CI 1.11–4.85) in patients with PECs by at least two clinicians was higher in ICUs with a good climate than in those with a poor one. The differences between ICUs with an average climate, with (n = 12, 18%) or without (n = 20, 29%) nursing involvement at the end of life, and ICUs with a poor climate were less obvious but still in favour of the former. Conclusion: Enhancing the quality of the ethical climate in the ICU may improve both the identification of patients receiving excessive care and the decision-making process at the end of life
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
LHCb upgrade software and computing : technical design report
This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis
Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era
The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034
cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier
- …