32 research outputs found

    Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging

    Get PDF
    Polylactic-co-glycolic acid (PLGA) based nanoparticles are biocompatible and biodegradable and therefore have been extensively investigated as therapeutic carriers. Here, we engineered diagnostically active PLGA nanoparticles that incorporate high payloads of nanocrystals into their core for tunable bioimaging features. We accomplished this through esterification reactions of PLGA to generate polymers modified with nanocrystals. The PLGA nanoparticles formed from modified PLGA polymers that were functionalized with either gold nanocrystals or quantum dots exhibited favorable features for computed tomography and optical imaging, respectively.National Heart, Lung, and Blood Institute (Programs of Excellence in Nanotechnology (PEN) Award, Contract #HHSN268201000045C))National Institutes of Health (U.S.) (R01 EB009638)National Institutes of Health (U.S.) (R01 CA155432)National Institutes of Health (U.S.) (K99 EB012165)Netherlands Organization for Scientific Research ((NWO) ECHO.06.B.047

    Synthesis and in vitro evaluation of a multifunctional and surface-switchable nanoemulsion platform

    Get PDF
    We present a multifunctional nanoparticle platform that has targeting moieties shielded by a matrix metalloproteinase-2 (MMP2) cleavable PEG coating. Upon incubation with MMP2 this surface-switchable coating is removed and the targeting ligands become available for binding. The concept was evaluated in vitro using biotin and αvβ3-integrin-specific RGD-peptide functionalized nanoparticles.National Heart, Lung, and Blood InstituteNational Institutes of Health (U.S.) (Program of Excellence in Nanotechnology (PEN) Award Contract HHSN268201000045C

    Tumor Angiogenesis Phenotyping by Nanoparticle-facilitated Magnetic Resonance and Near-infrared Fluorescence Molecular Imaging

    Get PDF
    AbstractOne of the challenges of tailored antiangiogenic therapy is the ability to adequately monitor the angiogenic activity of a malignancy in response to treatment. The αvβ3 integrin, highly overexpressed on newly formed tumor vessels, has been successfully used as a target for Arg-Gly-Asp (RGD)-functionalized nanoparticle contrast agents. In the present study, an RGD-functionalized nanocarrier was used to image ongoing angiogenesis in two different xenograft tumor models with varying intensities of angiogenesis (LS174T > EW7). To that end, iron oxide nanocrystals were included in the core of the nanoparticles to provide contrast for T2*-weighted magnetic resonance imaging (MRI), whereas the fluorophore Cy7 was attached to the surface to enable near-infrared fluorescence (NIRF) imaging. The mouse tumor models were used to test the potential of the nanoparticle probe in combination with dual modality imaging for in vivo detection of tumor angiogenesis. Pre-contrast and post-contrast images (4 hours) were acquired at a 9.4-T MRI system and revealed significant differences in the nanoparticle accumulation patterns between the two tumor models. In the case of the highly vascularized LS174T tumors, the accumulation was more confined to the periphery of the tumors, where angiogenesis is predominantly occurring. NIRF imaging revealed significant differences in accumulation kinetics between the models. In conclusion, this technology can serve as an in vivo biomarker for antiangiogenesis treatment and angiogenesis phenotyping

    Terutroban, a Thromboxane/Prostaglandin Endoperoxide Receptor Antagonist, Increases Survival in Stroke-Prone Rats by Preventing Systemic Inflammation and Endothelial Dysfunction: Comparison with Aspirin and Rosuvastatin

    Get PDF
    ABSTRACT This study investigated the efficacy of terutroban, a specific thromboxane/prostaglandin endoperoxide receptor antagonist, on stroke incidence in spontaneously hypertensive strokeprone rats (SHRSP). The effects of terutroban were compared with those of aspirin, another antiplatelet agent, and rosuvastatin, known to exert end-organ protection in SHRSP. Saltloaded male SHRSP were treated orally once a day with vehicle, terutroban (30 mg/kg/day), aspirin (60 mg/kg/day), or rosuvastatin (10 mg/kg/day). Compared with vehicle, and regardless of any effect on blood pressure or serum thromboxane B 2 levels, terutroban significantly increased survival (p Ͻ 0.001) as a consequence of a delayed brain lesion occurrence monitored by magnetic resonance imaging (p Ͻ 0.001), and a delayed increase of proteinuria (p Ͻ 0.001). Terutroban decreased cerebral mRNA transcription of interleukin-1␤, transforming growth factor-␤, and monocyte chemoattractant protein-1 after 6 weeks of dietary treatment. Terutroban also prevented the accumulation of urinary acute-phase proteins at high molecular weight, identified as markers of systemic inflammation, and assessed longitudinally by one-dimensional electrophoresis. Terutroban also has protective effects on the vasculature as suggested by the preservation of endothelial function and endothelial nitric-oxide synthase expression in isolated carotid arteries. These effects are similar to those obtained with rosuvastatin, and superior to those of aspirin. Terutroban increases survival in SHRSP by reducing systemic inflammation as well as preserving endothelial function. These data support clinical development of terutroban in the prevention of cerebrovascular and cardiovascular complications of atherothrombosis. Several clinical and experimental studies Spontaneously hypertensive stroke-prone rats (SHRSP) develop hypertension and proteinuria and die after the onset Article, publication date, and citation information can be found a

    Synthesis and in vitro evaluation of a multifunctional and surface-switchable nanoemulsion platform

    Get PDF
    We present a multifunctional nanoparticle platform that has targeting moieties shielded by a matrix metalloproteinase-2 (MMP2) cleavable PEG coating. Upon incubation with MMP2 this surface-switchable coating is removed and the targeting ligands become available for binding. The concept was evaluated in vitro using the biotin and αvβ3-integrin-specific RGD-peptide functionalized nanoparticles

    Multifunctional imaging nanoprobes

    No full text
    Multifunctional imaging nanoprobes have proven to be of great value in the research of pathological processes, as well as the assessment of the delivery, fate, and therapeutic potential of encapsulated drugs. Moreover, such probes may potentially support therapy schemes by the exploitation of their own physical properties, e.g., through thermal ablation. This review will present four classes of nanoparticulate imaging probes used in this area: multifunctional probes (1) that can be tracked with at least three different and complementary imaging techniques, (2) that carry a drug and have bimodal imaging properties, (3) that are employed for nucleic acid delivery and imaging, and (4) imaging probes with capabilities that can be used for thermal ablation. We will highlight several examples where the suitable combination of different (bio)materials like polymers, inorganic nanocrystals, fluorophores, proteins/peptides, and lipids can be tailored to manufacture multifunctional probes to accomplish nanomaterials of each of the aforementioned classes. Moreover, it will be demonstrated how multimodality imaging approaches improve our understanding of in vivo nanoparticle behavior and efficacy at different levels, ranging from the subcellular level to the whole bod
    corecore