37 research outputs found

    The diagram development for Computer Added Control and Monitoring system of drilling

    Get PDF
    The paper is concerned with the first stage of the extensive research aimed at developing design-automation system and well drilling process control. The proposed system is going to have some advantages over modern analogues, such as economic analysis at all levels, active engineering staff feedback, precedent-related principle for recommendations, etc. It will essentially reduce the risk of human errors and also optimize the well construction process from design to commissioning. The paper considers the results of the first design stage in a form of flow diagrams

    Single-Walled Carbon Nanotube Network Field Effect Transistor as a Humidity Sensor

    Get PDF
    Single-walled carbon nanotube network field effect transistors were fabricated and studied as humidity sensors. Sensing responses were altered by changing the gate voltage. At the open channel state (negative gate voltage), humidity pulse resulted in the decrease of the source-drain current, and, vice versa, the increase in the source-drain current was observed at the positive gate voltage. This effect was explained by the electron-donating nature of water molecules. The operation speed and signal intensity was found to be dependent on the gate voltage polarity. The positive or negative change in current with humidity pulse at zero-gate voltage was found to depend on the previous state of the gate electrode (positive or negative voltage, respectively). Those characteristics were explained by the charge traps in the gate dielectric altering the effective gate voltage, which influenced the operation of field effect transistor.Peer reviewe

    Ultrafast optoelectronic processes in 1D radial van der Waals heterostructures : carbon, boron nitride, and MoS 2 nanotubes with coexisting excitons and highly mobile charges

    Get PDF
    Heterostructures built from 2D, atomically thin crystals are bound by the van der Waals force and exhibit unique optoelectronic properties. Here, we report the structure, composition and optoelectronic properties of 1D van der Waals heterostructures comprising carbon nanotubes wrapped by atomically thin nanotubes of boron nitride and molybdenum disulfide (MoS2). The high quality of the composite was directly made evident on the atomic scale by transmission electron microscopy, and on the macroscopic scale by a study of the heterostructure’s equilibrium and ultrafast optoelectronics. Ultrafast pump−probe spectroscopy across the visible and terahertz frequency ranges identified that, in the MoS 2 nanotubes, excitons coexisted with a prominent population of free charges. The electron mobility was comparable to that found in high-quality atomically thin crystals. The high mobility of the MoS2 nanotubes highlights the potential of 1D van der Waals heterostructures for nanoscale optoelectronic devices

    All-nanotube stretchable supercapacitor with low equivalent series resistance

    No full text
    We report high-performance, stable, low equivalent series resistance all-nanotube stretchable supercapacitor based on single-walled carbon nanotube film electrodes and a boron nitride nanotube separator. A layer of boron nitride nanotubes, fabricated by airbrushing from isopropanol dispersion, allows avoiding problem of high internal resistance and short-circuiting of supercapacitors. The device, fabricated in a two-electrode test cell configuration, demonstrates electrochemical double layer capacitance mechanism and retains 96% of its initial capacitance after 20 000 electrochemical charging/discharging cycles with the specific capacitance value of 82 F g-1 and low equivalent series resistance of 4.6 . The stretchable supercapacitor prototype withstands at least 1000 cycles of 50% strain with a slight increase in the volumetric capacitance from 0.4 to 0.5 mF cm-3 and volumetric power density from 32 mW cm-3 to 40 mW cm-3 after stretching, which is higher than reported before. Moreover, a low resistance of 250 for the as-fabricated stretchable prototype was obtained, which slightly decreased with the strain applied up to 200 . Simple fabrication process of such devices can be easily extended making the all-nanotube stretchable supercapacitors, presented here, promising elements in future wearable devices.Peer reviewe

    Highly efficient doping of carbon nanotube films with chloroauric acid by dip-coating

    No full text
    Funding Information: We thank Stepan Romanov for in situ measurements of SWCNT film resistance during dip-coating process. This work is supported by the Russian Science Foundation (RSF) under grant number 17-19-01787 (dip-coating doping results) and the Ministry of Science and Higher Education of the Russian Federation (project no. FZSR-2020-0007 in the framework of the state assignment no. 075-03-2020-097/1). The authors thank the Council on grants of the President of the Russian Federation grant number НШ-1330.2022.1.3. Publisher Copyright: © 2022 The AuthorsSingle-walled carbon nanotube (SWCNT) based transparent and conductive films (TCFs) are one of the most prospective materials for novel flexible and stretchable electronic devices. Development of reproducible and scalable doping procedure is the key step towards the widespread implementation of SWCNT TCFs. Here, we thoroughly investigate a dip-coating technique for SWCNT doping as a promising approach for the practical manufacturing of SWCNT films with high performance. We examine the effect of dip-coating parameters on optical and electrical properties of the films using HAuCl4 solution in isopropyl alcohol (IPA) and in situ investigate doping effects. This method appeared to easily fine-tune the optoelectronic parameters of SWCNT films and achieve a record sheet resistance value of 36 Ohm/sq. at the 90% transmittance in the middle of visible spectral range by increasing a work function value from 4.8 (for pristine SWCNTs) to 6.0 eV. The proposed approach allows efficient, uniform, and reproducible fabrication of highly conductive and transparent SWCNT films and opens an avenue for precise tailoring of SWCNT Fermi level for optoelectronic devices.Peer reviewe

    Express determination of thickness and dielectric function of single-walled carbon nanotube films

    No full text
    Single-walled carbon nanotube (SWCNT) films are promising building blocks for diversified applications in electronics, photovoltaics, and photonics. However, their electrical and optical engineering is still a challenging task owing to multiple obstacles, including the absence of fast and easy-to-use methods for the determination of SWCNT film properties. Here, we present a rapid, contactless, and universal technique for accurate estimation of both SWCNT film thicknesses and their dielectric functions. The approach combines broadband optical absorbance and highly sensitive spectroscopic ellipsometry measurements. The observed linear dependence of the film thickness on its absorbance at 550nm provides a time-effective and contactless method of thickness assignment, which is of significant importance to the practical implementation of SWCNT films in optoelectronic devices. Additionally, our approach revealed that a simple procedure of film densification allows to controllably alter the dielectric response by atleast 40% and, thus, to add extra fine-tuning capabilities during material property engineering. Therefore, this express technique as a whole offers an advanced metrological tool for current and next-generation SWCNT-based devices.Peer reviewe

    Stretchable and transparent supercapacitors based on aerosol synthesized single-walled carbon nanotube films

    No full text
    Stretchable all-solid supercapacitors based on aerosol synthesized single-walled carbon nanotubes (SWCNTs) have been successfully fabricated and tested. High quality SWCNT films with excellent optoelectrical and mechanical properties were used as the current collectors and active electrodes of the stretchable supercapacitors. A transmittance of up to 75% was achieved for supercapacitors made from the assembly of two PDMS/SWCNT electrodes and a gel electrolyte in between. The transparent supercapacitor has a specific capacitance of 17.5 F g-1 and can be stretched up to 120% with practically no variation in the electrochemical performance after 1000 stretching cycles and 1000 charging-discharging cycles.Peer reviewe

    Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film

    No full text
    This work for the first time reports the results on study of a polymer-free carbon nanotube (CNT) films used as a saturable absorber in an all-fibre laser. It is demonstrated that free-standing single-walled CNT films fabricated by an aerosol method are able to ensure generation of transform-limited pulses in an Er all-fibre ring laser with duration of several picoseconds and high quality of mode locking. The optimal average output power levels are identified, amounting to 0.4-0.5 mW depending on the linear transmission of the studied samples (60% or 80%). Application of polymer-free CNT films solves problems related to degradation of conventional polymer matrices of CNT-based saturable absorbers and paves the way to longer-lasting and more reliable saturable absorbers compatible with all-fibre laser configurations.Peer reviewe
    corecore