85 research outputs found

    An FLRW accelerating universe model in Weyl type f(Q)f(Q) gravity and Observational Constraints

    Full text link
    We propose to develop a cosmological model of the universe based on Weyl type f(Q) f(Q) gravity which shows the transition from decelerating in the past to acceleration at present by considering a particular functional form of f(Q) f(Q) gravity as f(Q)=(H02)(α1+α2log(H02Q)) f(Q) = ({H_0}^2) (\alpha_1 + \alpha_2 \hskip0.05in log ({H_0^{-2}} Q)) . We have solved Weyl type f(Q) f(Q) gravity field equations numerically and have obtained numerical solutions to the Hubble and deceleration parameters, distance modulus, and apparent magnitudes of stellar objects like SNIa Supernovae. We have also obtained numerical solutions for the Weyl vector w w , non-metricity scalar Q Q , and the Lagrangian multiplier λ \lambda appearing in the action of f(Q) f(Q) gravity. We have compared our theoretical solutions with the error bar plots of the Observed Hubble data set of 77 77 points, 580 580 distance modulus SNIa data set, and 1048 1048 supernova Pantheon data sets of apparent magnitudes. It is found that our results fit well with the observed data set points. \bf{The model envisages a unique feature that although the universe is filled with perfect fluid as dust whose pressure is zero, still the weyl vector dominance f(Q) creates acceleration in it. }Comment: 13 pages, 5 figure

    Development of a photometric system for continuous flow analysis

    Get PDF
    Most chemical analyses carried out in a clinical laboratory are colorimetric. An improved photometric system is described where a tungsten lamp is the light source, a photo-diode is the detector and a microcontroller 8051 is used for processing and displaying absorbances. The performance characteristics of the instrument are reported. The parameters investigated are photometric linearity, precision and instrumental drift

    Role of Pneumococcal NanA Neuraminidase Activity in Peripheral Blood

    Get PDF
    The most frequent form of hemolytic-uremic syndrome (HUS) is associated with infections caused by Shiga-like toxin-producing Enterohaemorrhagic Escherichia coli (STEC). In rarer cases HUS can be triggered by Streptococcus pneumoniae. While production of Shiga-like toxins explains STEC-HUS, the mechanisms of pneumococcal HUS are less well known. S. pneumoniae produces neuraminidases with activity against cell surface sialic acids that are critical for factor H-mediated complement regulation on cells and platelets. The aim of this study was to find out whether S. pneumoniae neuraminidase NanA could trigger complement activation and hemolysis in whole blood. We studied clinical S. pneumoniae isolates and two laboratory strains, a wild-type strain expressing NanA, and a NanA deletion mutant for their ability to remove sialic acids from various human cells and platelets. Red blood cell lysis and activation of complement was measured ex vivo by incubating whole blood with bacterial culture supernatants. We show here that NanA expressing S. pneumoniae strains and isolates are able to remove sialic acids from cells, and platelets. Removal of sialic acids by NanA increased complement activity in whole blood, while absence of NanA blocked complement triggering and hemolytic activity indicating that removal of sialic acids by NanA could potentially trigger pHUS.Peer reviewe

    Phospholipase C: underrated players in microbial infections

    Get PDF
    During bacterial infections, one or more virulence factors are required to support the survival, growth, and colonization of the pathogen within the host, leading to the symptomatic characteristic of the disease. The outcome of bacterial infections is determined by several factors from both host as well as pathogen origin. Proteins and enzymes involved in cellular signaling are important players in determining the outcome of host–pathogen interactions. phospholipase C (PLCs) participate in cellular signaling and regulation by virtue of their ability to hydrolyze membrane phospholipids into di-acyl-glycerol (DAG) and inositol triphosphate (IP3), which further causes the activation of other signaling pathways involved in various processes, including immune response. A total of 13 PLC isoforms are known so far, differing in their structure, regulation, and tissue-specific distribution. Different PLC isoforms have been implicated in various diseases, including cancer and infectious diseases; however, their roles in infectious diseases are not clearly understood. Many studies have suggested the prominent roles of both host and pathogen-derived PLCs during infections. PLCs have also been shown to contribute towards disease pathogenesis and the onset of disease symptoms. In this review, we have discussed the contribution of PLCs as a determinant of the outcome of host-pathogen interaction and pathogenesis during bacterial infections of human importance

    Status of <i>Isoetes coromandeliana</i> L.f. and <i>Equisetum debile</i> Roxb. ex Voucher in Gujarat State, Western India

    Get PDF
    Occurrence of Isoetes coromandeliana L.f. in natural ponds of Harni, Savali and Tuwa (India) is known since 1956 by earlier workers. Equisetum debile Roxb. ex Voucher was also reported in 1962 growing as wild at Savali. Available literature indicates that I. coromandeliana falls under the category of ‘near threatened’ in Asian continents and as an ‘endangered species’ at national (India) level. In the current field work study, the authors could not locate the investigated species from the locations earlier documented by researchers. Few saplings of I. coromandeliana were observed at Talod and Vaktapur near Gandhinagar, a new location for the species. In contrast, E. debile appeared to be lost in wild from Gujarat. Their extinction from earlier reported locations is associated with anthropogenic pressure and thus legal action for their protection is needed. The present paper suggests further survey and habitat based studies and recommends conservation and management action plans based upon the ecology of the habitat.</p

    Bianchi Type-II String Cosmological Models in Normal Gauge for Lyra's Manifold with Constant Deceleration Parameter

    Full text link
    The present study deals with a spatially homogeneous and anisotropic Bianchi-II cosmological models representing massive strings in normal gauge for Lyra's manifold by applying the variation law for generalized Hubble's parameter that yields a constant value of deceleration parameter. The variation law for Hubble's parameter generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential form. Using these two forms, Einstein's modified field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The energy-momentum tensor for such string as formulated by Letelier (1983) is used to construct massive string cosmological models for which we assume that the expansion (θ\theta) in the model is proportional to the component σ 11\sigma^{1}_{~1} of the shear tensor σij\sigma^{j}_{i}. This condition leads to A=(BC)mA = (BC)^{m}, where A, B and C are the metric coefficients and m is proportionality constant. Our models are in accelerating phase which is consistent to the recent observations. It has been found that the displacement vector β\beta behaves like cosmological term Λ\Lambda in the normal gauge treatment and the solutions are consistent with recent observations of SNe Ia. It has been found that massive strings dominate in the decelerating universe whereas strings dominate in the accelerating universe. Some physical and geometric behaviour of these models are also discussed.Comment: 24 pages, 10 figure

    Evaporation boundary conditions for the R13 equations of rarefied gas dynamics

    Get PDF
    The regularized 13 moment (R13) equations are a macroscopic model for the description of rarefied gas flows in the transition regime. The equations have been shown to give meaningful results for Knudsen numbers up to about 0.5. Here, their range of applicability is extended by deriving and testing boundary conditions for evaporating and condensing interfaces. The macroscopic interface conditions are derived from the microscopic interface conditions of kinetic theory. Tests include evaporation into a half-space and evaporation/condensation of a vapor between two liquid surfaces of different temperatures. Comparison indicates that overall the R13 equations agree better with microscopic solutions than classical hydrodynamics

    BgaA acts as an adhesin to mediate attachment of some pneumococcal strains to human epithelial cells

    Get PDF
    Streptococcus pneumoniae colonization of the respiratory tract is an essential precursor for pneumococcal disease. To colonize efficiently, bacteria must adhere to the epithelial-cell surface. S. pneumoniae possesses surface-associated exoglycosidases that are capable of sequentially deglycosylating human glycans. Two exoglycosidases, neuraminidase (NanA) and β-galactosidase (BgaA), have previously been shown to contribute to S. pneumoniae adherence to human epithelial cells, as deletion of either of these genes results in reduced adherence. It has been suggested that these enzymes may modulate adherence by cleaving sugars to reveal a receptor on host cells. Pretreatment of epithelial cells with exogenous neuraminidase restores the adherence of a nanA mutant, whereas pretreatment with β-galactosidase does not restore the adherence of a bgaA mutant. These data suggest that BgaA may not function to reveal a receptor, and implicate an alternative role for BgaA in adherence. Here we demonstrate that β-galactosidase activity is not required for BgaA-mediated adherence. Addition of recombinant BgaA (rBgaA) to adherence assays and pretreatment of epithelial cells with rBgaA both significantly reduced the level of adherence of the parental strain, but not the BgaA mutant. One possible explanation of these data is that BgaA is acting as an adhesin and that rBgaA is binding to the receptor, preventing bacterial binding. A bead-binding assay demonstrated that BgaA can bind directly to human epithelial cells, supporting the hypothesis that BgaA is an adhesin. Preliminary characterization of the epithelial-cell receptor suggests that it is a glycan in the context of a glycosphingolipid. To further establish the relevance of this adherence mechanism, we demonstrated that BgaA-mediated adherence contributed to adherence of a recent clinical isolate to primary human epithelial cells. Together, these data suggest a novel role for BgaA as an adhesin and suggest that this mechanism could contribute to adherence of at least some pneumococcal strains in vivo
    corecore