7 research outputs found

    BIOGRAPHY

    No full text
    hemoglobin is associated with a potent anti-parasitic defense in fish. (Under the direction of Dr. Edward J. Noga.) Innate immunity plays a crucial role in the defense against prokaryotic and eukaryotic pathogens. Major components of this defense are antimicrobial peptides (AMPs). Some AMPs are derived from larger proteins with other recognized functions (e.g., lactoferrin, histones). In this study, we demonstrate the expression of peptides homologous to the β-chain of hemoglobin (Hb-β), one of the two major subunits of this respiratory protein. These Hb-β peptides (HbβP-1,-2 and-3), isolated from gill of the economically important channel catfish (Ictalurus punctatus), had antibacterial activity and were upregulated in gill and skin epithelium in response to parasitic (Ichthyophthirius multifiliis, ich) infection. One peptide (HbβP-1), while having relatively weak antibacterial activity had antiparasitic activity comparable to that of other potently antiparasitic AMPs. Also, this cidal activity was specifically directed against the trophozoite (trophont) stage of ich at a low concentration (6.2 μg/ml, 1.7 μM) but had no apparent effect on the disseminative (theront) stage or the reproductive (tomont) stage at the highest concentration tested (400 μg/ml, 108 μM). In addition, HbβP-1 was not lytic to channel catfish erythrocytes at the highest concentration tested (400 μg/ml, 108 μM). Immunohistochemistry and in situ hybridization of skin and gill from fish experimentally challenged with ich indicated that the HbβP-1 sequence was both synthesized and expressed in epithelial tissues of skin and gill, which are the target tissues for ich. “Bug blots ” of gill extracts from fish recovering from a bacterial infection suggested that upregulation of these Hb-β related peptides might also occur with other infections. These findings, along with the recent discovery by others that Hb-β is expressed in mammalian macrophages and alveolar epithelium, suggest that hemoglobin-derived AMPs might play a significant role in the non-specific immune response of vertebrates

    Development of a fluorometric microtiter plate based enzyme assay for MPS IVA (Morquio type A) using dried blood spots

    No full text
    Mucopolysaccharidosis type IVA or Morquio type-A disease is a hereditary lysosomal storage disorder caused by deficient activity of the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The disease is caused by lysosomal accumulation of unprocessed glycosaminoglycans (GAGs) that manifests with severe to mild skeletal and cardiopulmonary abnormalities. We have developed a modified microtiter plate-based enzyme activity assay using dried blood spots and a fluorescent substrate for measuring specific GALNS activity to identify patients with MPS IVA

    Emerging Approaches for Fluorescence-Based Newborn Screening of Mucopolysaccharidoses

    No full text
    Interest in newborn screening for mucopolysaccharidoses (MPS) is growing, due in part to ongoing efforts to develop new therapies for these disorders and new screening assays to identify increased risk for the individual MPSs on the basis of deficiency in the cognate enzyme. Existing tests for MPSs utilize either fluorescence or mass spectrometry detection methods to measure biomarkers of disease (e.g., enzyme function or glycosaminoglycans) using either urine or dried blood spot (DBS) samples. There are currently two approaches to fluorescence-based enzyme function assays from DBS: (1) manual reaction mixing, incubation, and termination followed by detection on a microtiter plate reader; and (2) miniaturized automation of these same assay steps using digital microfluidics technology. This article describes the origins of laboratory assays for enzyme activity measurement, the maturation and clinical application of fluorescent enzyme assays for MPS newborn screening, and considerations for future expansion of the technology
    corecore