26 research outputs found

    Bioprocessing Data for the Production of Marine Enzymes

    Get PDF
    This review is a synopsis of different bioprocess engineering approaches adopted for the production of marine enzymes. Three major modes of operation: batch, fed-batch and continuous have been used for production of enzymes (such as protease, chitinase, agarase, peroxidase) mainly from marine bacteria and fungi on a laboratory bioreactor and pilot plant scales. Submerged, immobilized and solid-state processes in batch mode were widely employed. The fed-batch process was also applied in several bioprocesses. Continuous processes with suspended cells as well as with immobilized cells have been used. Investigations in shake flasks were conducted with the prospect of large-scale processing in reactors

    N,N′-Bis(4-pyridylmethyl­ene)octane-1,8-diamine

    Get PDF
    The complete molecule of the title compound, C20H26N4, is generated by a crystallographic centre of inversion and the central eight-carbon chain adopts a fully extended conformation. In the crystal, the molecules pack in layers parallel to (010)

    What do experienced water managers think of water resources of our nation and its management infrastructure?

    Get PDF
    This article represents the second report by an ASCE Task Committee Infrastructure Impacts of Landscape-driven Weather Change under the ASCE Watershed Management Technical Committee and the ASCE Hydroclimate Technical Committee. Herein, the \u27infrastructure impacts are referred to as infrastructure-sensitive changes in weather and climate patterns (extremes and non-extremes) that are modulated, among other factors, by changes in landscape, land use and land cover change. In this first report, the article argued for explicitly considering the well-established feedbacks triggered by infrastructure systems to the land-atmosphere system via landscape change. In this report by the ASCE Task Committee (TC), we present the results of this ASCE TC\u27s survey of a cross section of experienced water managers using a set of carefully crafted questions. These questions covered water resources management, infrastructure resiliency and recommendations for inclusion in education and curriculum. We describe here the specifics of the survey and the results obtained in the form of statistical averages on the \u27perception\u27 of these managers. Finally, we discuss what these \u27perception\u27 averages may indicate to the ASCE TC and community as a whole for stewardship of the civil engineering profession. The survey and the responses gathered are not exhaustive nor do they represent the ASCE-endorsed viewpoint. However, the survey provides a critical first step to developing the framework of a research and education plan for ASCE. Given the Water Resources Reform and Development Act passed in 2014, we must now take into account the perceived concerns of the water management community. © 2015 Hossain et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Tale Untold: Lived Experiences of Female Sex Workers

    No full text

    Painting the town green The use of urban sustainability indicators in the United States of America

    No full text
    Includes bibliographical references. Title from coverAvailable from British Library Document Supply Centre- DSC:m03/20472 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Arsenic Accumulation in Rice and Probable Mitigation Approaches: A Review

    Get PDF
    According to recent reports, millions of people across the globe are suffering from arsenic (As) toxicity. Arsenic is present in different oxidative states in the environment and enters in the food chain through soil and water. In the agricultural field, irrigation with arsenic contaminated water, that is, having a higher level of arsenic contamination on the top soil, which may affects the quality of crop production. The major crop like rice (Oryza sativa L.) requires a considerable amount of water to complete its lifecycle. Rice plants potentially accumulate arsenic, particularly inorganic arsenic (iAs) from the field, in different body parts including grains. Different transporters have been reported in assisting the accumulation of arsenic in plant cells; for example, arsenate (AsV) is absorbed with the help of phosphate transporters, and arsenite (AsIII) through nodulin 26-like intrinsic protein (NIP) by the silicon transport pathway and plasma membrane intrinsic protein aquaporins. Researchers and practitioners are trying their level best to mitigate the problem of As contamination in rice. However, the solution strategies vary considerably with various factors, such as cultural practices, soil, water, and environmental/economic conditions, etc. The contemporary work on rice to explain arsenic uptake, transport, and metabolism processes at rhizosphere, may help to formulate better plans. Common agronomical practices like rain water harvesting for crop irrigation, use of natural components that help in arsenic methylation, and biotechnological approaches may explore how to reduce arsenic uptake by food crops. This review will encompass the research advances and practical agronomic strategies on arsenic contamination in rice crop
    corecore