3 research outputs found

    Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress

    Get PDF
    Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing’s syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions

    Postbiotic production: harnessing the power of microbial metabolites for health applications

    Get PDF
    Postbiotics, which are bioactive substances derived from the metabolic processes of beneficial microbes, have received considerable attention in the field of microbiome science in recent years, presenting a promising path for exploration and innovation. This comprehensive analysis looks into the multidimensional terrain of postbiotic production, including an extensive examination of diverse postbiotic classes, revealing their sophisticated mechanisms of action and highlighting future applications that might significantly affect human health. The authors thoroughly investigate the various mechanisms that support postbiotic production, ranging from conventional fermentation procedures to cutting-edge enzyme conversion and synthetic biology approaches. The review, as an acknowledgment of the field’s developing nature, not only highlights current achievements but also navigates through the problems inherent in postbiotic production. In order to successfully include postbiotics in therapeutic interventions and the production of functional food ingredients, emphasis is given to critical elements, including improving yields, bolstering stability, and assuring safety. The knowledge presented herein sheds light on the expanding field of postbiotics and their potential to revolutionize the development of novel therapeutics and functional food ingredients

    Beneficial effects of biochar application on mitigating the drought and salinity stress implications on plants

    No full text
    Biochar, an amorphous and highly porous carbonaceous substance derived from the thermal decomposition of organic matter, has been empirically proven to enhance soil water retention capacity, mitigate soil salinity, and augment nutrient bioavailability. Consequently, these improvements exert a stimulating influence on the growth and development of medicinal plants. Numerous scientific investigations have corroborated that the incorporation of biochar into the cultivation of medicinal flora can lead to increased plant biomass, heightened photosynthetic efficiency, and augmented accumulation of bioactive compounds. Furthermore, the utilization of biochar exhibits the potential to curtail the necessity for chemical fertilizers, which can otherwise have deleterious effects on soil health and the environment. A comprehensive comprehension of biochar's prospective role as a sustainable, long-term strategy for augmenting the productivity and resilience of medicinal plant cultivation in arid and saline environments holds paramount importance for ensuring a consistent supply of medicinal plants in the forthcoming years. This review aims to delve into the mechanistic foundations underpinning the beneficial impacts of biochar on plant development and the accumulation of bioactive constituents. It also explores the feasibility of biochar as a sustainable instrument for enhancing the cultivation of medicinal plants under adverse environmental conditions
    corecore