2 research outputs found

    Copper-Catalyzed Ring-Expansion Cascade of Azirines with Alkynes: Synthesis of Multisubstituted Pyridines at Room Temperature

    No full text
    The first intermolecular ring-expansion cascade of azirines with alkynes for the synthesis of pyridines, enabled by a copper/triethylamine catalytic system via simultaneous generation and utilization of yne-enamine and skipped-yne-imine intermediates, is reported. Experimental as well as computational mechanistic studies revealed that the role of triethylamine is crucial in deciding the reaction pathway toward the pyridine products. This process offers a novel, one-step, direct, and practical strategy for the rapid construction of highly substituted pyridines under exceedingly mild conditions, and an installed alkyne functionality

    Cytotoxicity Induced by Engineered Silver Nanocrystallites Is Dependent on Surface Coatings and Cell Types

    No full text
    Due to their unique antimicrobial properties silver nanocrystallites have garnered substantial attention and are used extensively for biomedical applications as an additive to wound dressings, surgical instruments and bone substitute materials. They are also released into unintended locations such as the environment or biosphere. Therefore it is imperative to understand the potential interactions, fate and transport of nanoparticles with environmental biotic systems. Numerous factors including the composition, size, shape, surface charge, and capping molecule of nanoparticles are known to influence cell cytotoxicity. Our results demonstrate that the physical/chemical properties of the silver nanoparticles including surface charge, differential binding and aggregation potential, which are influenced by the surface coatings, are a major determining factor in eliciting cytotoxicity and in dictating potential cellular interactions. In the present investigation, silver nanocrystallites with nearly uniform size and shape distribution but with different surface coatings, imparting overall high negativity to high positivity, were synthesized. These nanoparticles included poly­(diallyldimethylammonium) chloride-Ag, biogenic-Ag, colloidal-Ag (uncoated), and oleate-Ag with zeta potentials +45 ± 5, −12 ± 2, −42 ± 5, and −45 ± 5 mV, respectively; the particles were purified and thoroughly characterized so as to avoid false cytotoxicity interpretations. A systematic investigation on the cytotoxic effects, cellular response, and membrane damage caused by these four different silver nanoparticles was carried out using multiple toxicity measurements on mouse macrophage (RAW-264.7) and lung epithelial (C-10) cell lines. Our results clearly indicate that the cytotoxicity was dependent on various factors such as surface charge and coating materials used in the synthesis, particle aggregation, and the cell-type for the different silver nanoparticles that were investigated. Poly­(diallyldimethylammonium)-coated Ag nanoparticles were found to be the most toxic, followed by biogenic-Ag and oleate-Ag nanoparticles, whereas uncoated or colloidal silver nanoparticles were found to be the least toxic to both macrophage and lung epithelial cells. Also, based on our cytotoxicity interpretations, lung epithelial cells were found to be more resistant to the silver nanoparticles than the macrophage cells, regardless of the surface coating
    corecore