19 research outputs found

    Observation of laser pulse propagation in optical fibers with a SPAD camera

    Get PDF
    Recording processes and events that occur on sub-nanosecond timescales poses a difficult challenge. Conventional ultrafast imaging techniques often rely on long data collection times, which can be due to limited device sensitivity and/or the requirement of scanning the detection system to form an image. In this work, we use a single-photon avalanche detector array camera with pico-second timing accuracy to detect photons scattered by the cladding in optical fibers. We use this method to film supercontinuum generation and track a GHz pulse train in optical fibers. We also show how the limited spatial resolution of the array can be improved with computational imaging. The single-photon sensitivity of the camera and the absence of scanning the detection system results in short total acquisition times, as low as a few seconds depending on light levels. Our results allow us to calculate the group index of different wavelength bands within the supercontinuum generation process. This technology can be applied to a range of applications, e.g., the characterization of ultrafast processes, time-resolved fluorescence imaging, three-dimensional depth imaging, and tracking hidden objects around a corner. © The Author(s) 20171541sciescopu

    Characterization of laser-driven single and double electron bunches with a permanent magnet quadrupole triplet and pepper-pot mask

    Get PDF
    Electron beams from laser-plasma wakefield accelerators have low transverse emittance, comparable to those from conventional radio frequency accelerators, which highlights their potential for applications, many of which will require the use of quadrupole magnets for optimal electron beam transport. We report on characterizing electron bunches where double bunches are observed under certain conditions. In particular, we present pepper-pot measurements of the transverse emittance of 120-200 MeV laser wakefield electron bunches after propagation through a triplet of permanent quadrupole magnets. It is shown that the normalized emittance at source can be as low as 1 π mm mrad (resolution limited), growing by about five times after propagation through the quadrupoles due to beam energy spread. The inherent energy-dependence of the magnets also enables detection of double electron bunches that could otherwise remain unresolved, providing insight into the self-injection of multiple bunches. The combination of quadrupoles and pepper-pot, in addition, acts as a diagnostic for the alignment of the magnetic triplet

    Electron energy increase in a laser wakefield accelerator using up-ramp plasma density profiles

    Get PDF
    The phase velocity of the wakefield of a laser wakefield accelerator can, theoretically, be manipulated by shaping the longitudinal plasma density profile, thus controlling the parameters of the generated electron beam. We present an experimental method where using a series of shaped longitudinal plasma density profiles we increased the mean electron peak energy more than 50%, from 175 +/- 1 MeV to 262 +/- 10 MeV and the maximum peak energy from 182 MeV to 363 MeV. The divergence follows closely the change of mean energy and decreases from 58.9 +/- 0.45 mrad to 12.6 +/- 1.2 mrad along the horizontal axis and from 35 +/- 0.3 mrad to 8.3 +/- 0.69 mrad along the vertical axis. Particle-in-cell simulations show that a ramp in a plasma density profile can affect the evolution of the wakefield, thus qualitatively confirming the experimental results. The presented method can increase the electron energy for a fixed laser power and at the same time offer an energy tunable source of electrons.© The Author(s) 201

    High-charge 10 GeV electron acceleration in a 10 cm nanoparticle-assisted hybrid wakefield accelerator

    Full text link
    In an electron wakefield accelerator, an intense laser pulse or charged particle beam excites plasma waves. Under proper conditions, electrons from the background plasma are trapped in the plasma wave and accelerated to ultra-relativistic velocities. We present recent results from a proof-of-principle wakefield acceleration experiment that reveal a unique synergy between a laser-driven and particle-driven accelerator: a high-charge laser-wakefield accelerated electron bunch can drive its own wakefield while simultaneously drawing energy from the laser pulse via direct laser acceleration. This process continues to accelerate electrons beyond the usual decelerating phase of the wakefield, thus reaching much higher energies. We find that the 10-centimeter-long nanoparticle-assisted wakefield accelerator can generate 340 pC, 10.4+-0.6 GeV electron bunches with 3.4 GeV RMS convolved energy spread and 0.9 mrad RMS divergence. It can also produce bunches with lower energy, a few percent energy spread, and a higher charge. This synergistic mechanism and the simplicity of the experimental setup represent a step closer to compact tabletop particle accelerators suitable for applications requiring high charge at high energies, such as free electron lasers or radiation sources producing muon beams

    Experimental studies of laser plasma wakefield acceleration

    No full text
    This thesis describes experiments that explore the possibility of improving the quality of an electron beam obtained from a laser wakefield accelerator (LWFA) by shaping the longitudinal plasma density profile. Different density profiles have been obtained by employing a range of Laval nozzles with different geometries. These are modelled and numerically simulated under different conditions using Fluent 6.3. Density lineouts from simulations for different heights above the nozzle give the plasma density profile for each experimental condition. The plasma density profile is modified by changing the geometry of the nozzle, the interaction point, the laser beam angle relative to the exit plane of the nozzle and pressure of the gas. In this way the leading up-ramp length of the density profile (that interacts first with the laser) has been varied between 0.47 mm to 1.39 mm and the maximum plasma density varied between 1.29 x 1019 cm⁻³ to 2.03 x 1019 cm⁻³. The influence of the density profile parameters on the LWFA process is quantified by monitoring the properties of the generated electron beam. It is shown that the leading ramp of the plasma density profile i.e. the ramp that interacts first with the laser, has a strong influence on the quality of the electron beam. Density profiles with the same peak plasma density but different ramp lengths generate electron beams with a factor of 1.4 difference in charge, 1.1 in electron energy, 2 in pointing and 1.45 in energy spread. Longer ramp lengths enhance the quality of electron beams, which suggest that LWFA injection occurs at the entrance density ramp. Complex density profiles are produced by tilting the nozzle relative to the direction of propagation of the laser. This allows continuous tuning of the peak energy of the electron beam from 135 ± 2MeV up to 171 ± 2MeV. The electron beam energy spread show improvements from 20.7 ± 1.2% to 8.9 ± 0.9%. The charge closely follows the evolution of the energy spread and has a mean value of 0.61 ± 0.16 pC. Experimental results also show that the angular distribution of the electron beam becomes elliptical when the laser focal plane is moved from the edge of the gas jet towards the centre of the density profile. This result is linked to the existence of a distorted LWFA bubble that propagates off-axis therefore affecting the pointing and transverse shape of the electron beam.This thesis describes experiments that explore the possibility of improving the quality of an electron beam obtained from a laser wakefield accelerator (LWFA) by shaping the longitudinal plasma density profile. Different density profiles have been obtained by employing a range of Laval nozzles with different geometries. These are modelled and numerically simulated under different conditions using Fluent 6.3. Density lineouts from simulations for different heights above the nozzle give the plasma density profile for each experimental condition. The plasma density profile is modified by changing the geometry of the nozzle, the interaction point, the laser beam angle relative to the exit plane of the nozzle and pressure of the gas. In this way the leading up-ramp length of the density profile (that interacts first with the laser) has been varied between 0.47 mm to 1.39 mm and the maximum plasma density varied between 1.29 x 1019 cm⁻³ to 2.03 x 1019 cm⁻³. The influence of the density profile parameters on the LWFA process is quantified by monitoring the properties of the generated electron beam. It is shown that the leading ramp of the plasma density profile i.e. the ramp that interacts first with the laser, has a strong influence on the quality of the electron beam. Density profiles with the same peak plasma density but different ramp lengths generate electron beams with a factor of 1.4 difference in charge, 1.1 in electron energy, 2 in pointing and 1.45 in energy spread. Longer ramp lengths enhance the quality of electron beams, which suggest that LWFA injection occurs at the entrance density ramp. Complex density profiles are produced by tilting the nozzle relative to the direction of propagation of the laser. This allows continuous tuning of the peak energy of the electron beam from 135 ± 2MeV up to 171 ± 2MeV. The electron beam energy spread show improvements from 20.7 ± 1.2% to 8.9 ± 0.9%. The charge closely follows the evolution of the energy spread and has a mean value of 0.61 ± 0.16 pC. Experimental results also show that the angular distribution of the electron beam becomes elliptical when the laser focal plane is moved from the edge of the gas jet towards the centre of the density profile. This result is linked to the existence of a distorted LWFA bubble that propagates off-axis therefore affecting the pointing and transverse shape of the electron beam

    Gas flow effect on the surface modification of aluminum and silver targets irradiated by a nanosecond laser

    No full text
    This study investigates the surface modification of a material irradiated by a nanosecond Nd:YAG green laser while exposed to a gas flow. Scanning electron microscopy images and X-ray diffraction profiles illustrate the effect of laser irradiation in different environments, especially under backing gas pressures of 0.5, 1, and 1.5 bar applied through a supersonic nozzle. After irradiation, the microhardness obtained through the Vickers hardness increased by a factor of 3.40 and 4.90 for Al and Ag, respectively. This enhancement can be attributed to the surface and structural modification of the irradiated sample under different environments. Furthermore, the microhardness was found to be associated with the microstrain. © 2023 Elsevier Ltd11Nsciescopu
    corecore