2 research outputs found

    Bioremediation Potential of Cr(VI) by <i>Lysinibacillus cavernae</i> CR-2 Isolated from Chromite-Polluted Soil: A Promising Approach for Cr(VI) Detoxification

    No full text
    The present study focuses on an efficient Cr(VI)-reducing bacterial strain (CR-2) isolated from an abandoned chromate plant in Qinghai Province, China. CR-2 was confirmed as Lysinibacillus cavernae using 16S rRNA gene sequencing. CR-2 could survive at 500 mg L−1 Cr(VI) and effectively reduce Cr(VI) at concentrations of −1, a pH of 5–9, a temperature of 20–40 °C, and a salinity of 5–15 g L−1. According to the Box–Behnken experimental design, the maximum Cr(VI) removal efficiency by L. cavernae CR-2 was 76.21% under optimum conditions, which comprised a pH of 6.68, a temperature of 28.90 °C, and a salinity of 9.85 g L−1. With regard to Cr(VI) reduction mediated by L. cavernae CR-2, enhancement in efficiency was observed in the presence of Cu2+ and Ca2+, while significant inhibition in the reduction capacity occurred upon exposure to Mg2+, Ba2+, Ni2+, Pb2+, or Cd2+. Moreover, L. cavernae CR-2 tends to use glucose as an electron donor for the reduction of Cr(VI). Results of cell fraction separation and degeneration indicated that the Cr(VI) removal was primarily due to the reduction of Cr(VI) via chromium reductase in the cytoplasm. In addition, bioanalysis of L. cavernae CR-2 by SEM-EDS and TEM-EDS suggested that Cr was distributed both on the surface and in the cell cytoplasm. FT-IR analyses established that multiple functional groups (hydroxyl, carbonyl, amide, amino, and aldehyde groups) participated in the Cr(VI) biosorption on the cell surface. XPS and HPLC also showed that the Cr(III) end-products could be present as Cr(III) hydroxides or as organic–Cr(III) complexes. This study yields insights into the Cr(VI) bioreduction mechanism of L. cavernae CR-2.</p

    A Recyclable Mineral Catalyst for Visible-Light-Driven Photocatalytic Inactivation of Bacteria: Natural Magnetic Sphalerite

    No full text
    Motivated by recent studies that well-documented mineral photocatalyst for bacterial inactivation, a novel natural magnetic sphalerite (NMS) in lead–zinc deposit was first discovered and evaluated for its visible-light-driven (VLD) photocatalytic bactericidal properties. Superior to the reference natural sphalerite (NS), vibrating sampling magnetometeric (VSM) analysis revealed the ferromagnetic property of NMS, indicating its potential for easy separation after use. Under the irradiation of fluorescence tubes, NMS could inactivate 7 log<sub>10</sub> Gram-negative <i>Escherichia coli</i> K-12 without any regrowth and metal ions leached out from NMS show no toxicity to cells. The cell destruction process starting from cell wall to intracellular components was verified by TEM. Some products from damaged cells such as aldehydes, ketones and carboxylic acids were identified by FTIR with a decrease of cell wall functional groups. The relative amounts of potassium ion leakage from damaged cells gradually increased from initial 0 to approximately constant concentration of 1000 ppb with increasing reaction time. Superoxide radical (•O<sub>2</sub><sup>–</sup>) rather than hydroxyl radical (•OH) was proposed to be the primary reactive oxidative species (ROSs) responsible for <i>E. coli</i> inactivation by use of probes and electron spin resonance (ESR). H<sub>2</sub>O<sub>2</sub> determined by fluorescence method is greatly involved in bacterial inactivation in both nonpartition and partition system. Multiple cycle runs revealed excellent stability of recycled NMS without any significant loss of activity. This study provides a promising natural magnetic photocatalyst for large-scale bacterial inactivation, as NMS is abundant, easily recycled and possessed an excellent VLD bacterial inactivation ability
    corecore