7 research outputs found

    Identification of nuclear factor-kappa B sites in the Slc2a4 gene promoter

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Glucose transporter GLUT4 protein, codified by Slc2a4 gene plays a key role in glycemic homeostasis. Insulin resistance, as in obesity, has been associated to inflammatory state, in which decreased GLUT4 is a feature. Inflammatory NF-kappa B transcriptional factor has been proposed as a repressor of Slc2a4; although, the binding site(s) in Slc2a4 promoter and the direct repressor effect have never been reported yet. A motif-based sequence analysis of mouse Slc2a4 promoter revealed two putative kappa B sites located inside -83/-62 and -134/-113 bp. Eletrophoretic mobility assay showed that p50 and p65 NF-kappa B subunits bind to both putative kappa B sites. Chromatin immunoprecipitation assay using genomic DNA from adipocytes confirmed p50- and p65-binding to Slc2a4 promoter. Moreover, transfection experiments revealed that NF-kappa B binds to the -134/-113 bp region of the mouse Slc2a4 gene promoter, inhibiting the Slc2a4 gene transcription. The current findings demonstrate the existence of two kappa B sites in Slc2a4 gene promote, and that NF-kappa B has a direct repressor effect upon the Slc2a4 gene, providing an important link between insulin resistance and inflammation. (C) 2013 Elsevier Ireland Ltd. All rights reserved.370416718795Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [07/50554-1, 08/09194-4, 11/08570-5

    Prolactin-modulated gene expression profiles in pancreatic islets from adult female rats

    No full text
    The effects of prolactin (PRL) on transcript profile expression in 24 h cultured pancreatic adult rat islets were investigated by cDNA expression array analysis to identify possible candidate mRNA species that encode proteins involved in the maturation and growth of the endocrine pancreas. The expression of 54 out of 588 genes was altered by treatment with PRL. The differentially expressed transcripts identified were distributed in six main categories involved in cell proliferation and differentiation, namely, cell cycle regulation, signal transduction, transcription factors and coactivators, translational machinery, Ca2+-mediated exocytosis, and immuno-response. Treatment with PRL also reduced the expression of genes related to apoptosis. Several genes, whose expression was previously not known to be modulated by PRL were also identified including macrophage migration inhibitory factor and Ca2+/calmodulin-dependent protein kinase IV. These genes have recently been shown to play a crucial role in insulin secretion and insulin gene expression, respectively. Treatment with PRL also modified the expression of AKT2 and bone morphogenetic protein receptor 1A that control glucose homeostasis and directly affect the behavior of endocrine pancreas and/or the sensitivity of target tissues to insulin. In conclusion, PRL induces several patterns of gene expression in pancreatic islet cells. The analysis of these different patterns will be useful for understanding the complex mechanism of action of PRL in the maturation and differentiation of pancreatic islets. (C) 2004 Elsevier Ireland Ltd. All rights reserved.22041671415

    Participation of prolactin receptors and phosphatidylinositol 3-kinase and MAP kinase pathways in the increase in pancreatic islet mass and sensitivity to glucose during pregnancy

    No full text
    Prolactin (PRL) exerts its biological effects mainly by activating the Janus kinase/signal transducer and activator of transcription 5 (JAK/STAT5) signaling pathway. We have recently demonstrated that PRL also stimulates the insulin receptor substrates/phosphatidylinositol 3-kinase (IRSs/PI3K) and SH2-plekstrin homology domain (SHC)/EKK pathways in islets of neonatal rats. In the present study. we investigated the involvement of the PI3K and MAP kinase (MAPK) cascades in islet development and growth in pregnant rats. The protein expression of AKT1, p70(S6K) and SHC was higher in islets from pregnant compared with control rats. Higher basal levels of tyrosine phosphorylation were found in classic transducers of insulin cell signaling (IRS1, IRS2 and SHC). Increased levels of threonine/tyrosine phosphorylation of ERK1/2 and serine phosphorylation of AKT and p70(S6K) were also detected. To assess the participation of PRL in these phenomena, pregnant and control rats were treated with an antisense oligonucleotide to reduce the expression of the PRL receptor (PRLR). Phosphorylation of AKT was reduced in islets from pregnant and control rats, whereas p70(S6K) protein levels were reduced only in islets from treated pregnant rats. Finally, glucose-induced insulin secretion was reduced in islets front pregnant but not from control rats treated with the PRLR antisense oligonucleotide. In conclusion, downstream proteins of the PI3K (AKT and p70(S6K)) and MAPK (SHC and ERK1/2) cascades are regulated by PRL signaling in islets from pregnant rats. These findings indicate that these pathways participate in the increase in islet mass and the sensitivity to glucose during pregnancy.183346947

    Signal transducer and activator of transcription 3-regulated sarcoendoplasmic reticulurn Ca2+-ATPase 2 expression by prolactin and glucocorticoids is involved in the adaptation of insulin secretory response during the peripartum period

    No full text
    During pregnancy, the maternal endocrine pancreas undergoes, as a consequence of placental lactogens and prolactin (PR,L) action, functional changes that are characterized by increased glucose-induced insulin secretion. After delivery, the maternal endocrine pancreas rapidly returns to nonpregnant state, which is mainly attributed to the increased serum levels of glucocorticoids (GCs). Although GCs are known to decrease insulin secretion and counteract PRL action, the mechanisms for these effects are poorly understood. We have previously demonstrated that signal transducer and activator of transcription 3 (STAT3) is increased in islets treated with PRL. In the present study, we show that STAT3 expression and serine phosphorylation are increased in pancreatic islets at the end of pregnancy (P19). STAT3 serine phosphorylation rapidly returned to basal levels 3 days after delivery (U). The expression of the sarcoendoplasmic reticulum Ca2+-ATPase 2 (SERCA2), a crucial protein involved in the regulation of calcium handling in P-cells, was also increased in P19, returning to basal levels at L3. PRL increased SERCA2 and STAT3 expressions and STAT3 serine phosphorylation in RINm5F cells. The upregulation of SERCA2 by PRL was abolished after STAT3 knockdown. Moreover, PRL-induced STAT3 serine phosphorylation and SERCA2 expression were inhibited by dexamethasone (DEX). Insulin secretion from islets of PI 9 rats pre-incubated with thapsigargin and L3 rats showed a dramatic suppression of first phase of insulin release. The present results indicate that PRL regulates SERCA2 expression by a STAT3-dependent mechanism. PRL effect is counteracted by DEX and might contribute to the adaptation of maternal endocrine pancreas during the peripartum period.1951172
    corecore