79 research outputs found

    Assessing the Carbon Emission Driven by the Consumption of Carbohydrate-Rich Foods: The Case of China

    Get PDF
    peer-reviewedBackground: Carbohydrate-rich (CR) foods are essential parts of the Chinese diet. However, CR foods are often given less attention than animal-based foods. The objectives of this study were to analyze the carbon emissions caused by CR foods and to generate sustainable diets with low climate impact and adequate nutrients. Methods: Twelve common CR food consumption records from 4857 individuals were analyzed using K-means clustering algorithms. Furthermore, linear programming was used to generate optimized diets. Results: Total carbon emissions by CR foods was 683.38g CO2eq per day per capita, accounting for an annual total of 341.9Mt CO2eq. All individuals were ultimately divided into eight clusters, and none of the popular clusters were low carbon or nutrient sufficient. Optimized diets could reduce about 40% of carbon emissions compared to the average current diet. However, significant structural differences exist between the current diet and optimized diets. Conclusions: To reduce carbon emissions from the food chain, CR foods should be a research focus. Current Chinese diets need a big change to achieve positive environmental and health goals. The reduction of rice and wheat-based foods and an increase of bean foods were the focus of structural dietary change in CR food consumption.Natural Science Foundation of Guangdong Provinc

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Paternalistic Leadership in China

    No full text

    Monitoring the Aging and Edible Safety of Pork in Postmortem Storage Based on HSI and Wavelet Transform

    No full text
    The process of meat postmortem aging is a complex one, in which improved tenderness and aroma coincide with negative effects such as water loss and microbial growth. Determining the optimal postmortem storage time for meat is crucial but also challenging. A new visual monitoring technique based on hyperspectral imaging (HSI) has been proposed to monitor pork aging progress. M. longissimus thoracis from 15 pigs were stored at 4 °C for 12 days while quality indexes and HSI spectra were measured daily. Based on changes in physical and chemical indicators, 100 out of the 180 pieces of meat were selected and classified into rigor mortis, aged, and spoilt meat. Discrete wavelet transform (DWT) technology was used to improve the accuracy of classification. DWT separated approximate and detailed signals from the spectrum, resulting in a significant increase in classification speed and precision. The support vector machine (SVM) model with 70 band spectra achieved remarkable classification accuracy of 97.06%. The study findings revealed that the aging and microbial spoilage process started at the edges of the meat, with varying rates from one pig to another. Using HSI and visualization techniques, it was possible to evaluate and portray the postmortem aging progress and edible safety of pork during storage. This technology has the potential to aid the meat industry in making informed decisions on the optimal storage and cooking times that would preserve the quality of the meat and ensure its safety for consumption

    The mechanical properties of TCP phase of rapidly cooled molybdenum

    No full text
    The rapidly-cooling of pure molybdenum (Mo) at 1010 Ks−1 and the uniaxial tensile of the solid at a strain rate of 2 × 10 s−1 were studied by molecular dynamics simulation; then the structure evolution was investigated in terms of pair distribution function and the largest standard cluster analysis. It is found that Mo melt was cooled into a complex crystal with multiple characteristic lengths. Further analysis revealed that it is a mixture topological close packing (TCP) crystal composed of the dominated A15 phase (Mo-A15) and the less Z phase, with H phase as twin grain boundary. The Phonon spectrum, potential energy, and cohesion energy revealed that Mo-A15 is stable slightly inferior to Mo-bcc. Compared to the prevailing bcc Mo, Mo-A15 holds much higher Young’s modulus, ultimate tensile strength, and Yield strength, being a representative material for barrier layer with high hardness

    Long-term effect of soil and water conservation measures on runoff, sediment and their relationship in an orchard on sloping red soil of southern China.

    No full text
    The effect of soil and water conservation measures (SWCMs) is usually dependent on time. Thus the trend in reducing runoff and sediment over time is a very important theoretical problem for evaluating the effectiveness of SWCMs. Moreover, there is still a lack of comprehensive assessment of water erosion dynamics following implementing SWCMs despite their ecological significance. Therefore, the long-term impact of SWCMs on runoff and sediment and their relationships was assessed for an orchard on sloping red soil in southern China. Overland flow and erosion sediment were continuously observed for 15 years on citrus experimental plots under one of four treatments: grass strips, strip intercropping, level terrace and clean-tillage. By means of Mann-Kendall trend tests and double cumulative curves, the time series of runoff and sediment under the different treatments were analyzed. Furthermore, we linked the effect of soil conservation and the relationship between runoff and sediment variation to determine the mechanism of conservation measures on sediment reduction. The results showed that the first 4 years was the key period to prevent soil erosion for this orchard, and then the intensity of soil erosion decreased below 500 t·km-2·a-1. Considering economic costs and ecological effect, grass strips were the best protective measure for this test situation. The fitted curves of the effect of SWCMs on sediment reduction over time showed an 'L' form, but on runoff there was an approximately horizontal line. The SWCMs did not change the rainfall-runoff relationship, but did change the runoff-sediment erosion relationship. The erosion reduction mechanism of SWCMs in the early phase was a joint function of reducing runoff and changing the runoff-sediment relationship, and in the post-stable phase it worked mainly by reducing runoff. The results provide the basis for rational allocation of SWCMs considering location and time

    Assessing the Carbon Emission Driven by the Consumption of Carbohydrate-Rich Foods: The Case of China

    No full text
    Background: Carbohydrate-rich (CR) foods are essential parts of the Chinese diet. However, CR foods are often given less attention than animal-based foods. The objectives of this study were to analyze the carbon emissions caused by CR foods and to generate sustainable diets with low climate impact and adequate nutrients. Methods: Twelve common CR food consumption records from 4857 individuals were analyzed using K-means clustering algorithms. Furthermore, linear programming was used to generate optimized diets. Results: Total carbon emissions by CR foods was 683.38g CO2eq per day per capita, accounting for an annual total of 341.9Mt CO2eq. All individuals were ultimately divided into eight clusters, and none of the popular clusters were low carbon or nutrient sufficient. Optimized diets could reduce about 40% of carbon emissions compared to the average current diet. However, significant structural differences exist between the current diet and optimized diets. Conclusions: To reduce carbon emissions from the food chain, CR foods should be a research focus. Current Chinese diets need a big change to achieve positive environmental and health goals. The reduction of rice and wheat-based foods and an increase of bean foods were the focus of structural dietary change in CR food consumption.Natural Science Foundation of Guangdong Provinc

    Convergent Genomic Signatures of Cashmere Traits: Evidence for Natural and Artificial Selection

    No full text
    Convergent evolution provides powerful opportunities to investigate the genetic basis of complex traits. The Tibetan antelope (Pantholops hodgsonii) and Siberian ibex (Capra sibirica) belong to different subfamilies in Bovidae, but both have evolved similar superfine cashmere characteristics to meet the cold temperature in plateau environments. The cashmere traits of cashmere goats underwent strong artificial selection, and some traces of domestication also remained in the genome. Hence, we investigated the convergent genomic signatures of cashmere traits between natural and artificial selection. We compared the patterns of convergent molecular evolution between Tibetan antelope and Siberian ibex by testing positively selected genes, rapidly evolving genes and convergent amino acid substitutions. In addition, we analyzed the selected genomic features of cashmere goats under artificial selection using whole-genome resequencing data, and skin transcriptome data of cashmere goats were also used to focus on the genes involved in regulating cashmere traits. We found that molecular convergent events were very rare, but natural and artificial selection genes were convergent enriched in similar functional pathways (e.g., ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway) in a variety of gene sets. Type IV collagen family genes (COL4A2, COL4A4, COL4A5, COL6A5, COL6A6) and integrin family genes (ITGA2, ITGA4, ITGA9, ITGB8) may be important candidate genes for cashmere formation and development. Our results provide a comprehensive approach and perspective for exploring cashmere traits and offer a valuable reference for subsequent in-depth research on the molecular mechanisms regulating cashmere development and fineness
    corecore