34 research outputs found

    Junior Recital: Daniel Angstadt, violin

    Get PDF

    Disrupted network architecture of the resting brain in attention‐deficit/hyperactivity disorder

    Full text link
    Background Attention‐deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders of childhood. Neuroimaging investigations of ADHD have traditionally sought to detect localized abnormalities in discrete brain regions. Recent years, however, have seen the emergence of complementary lines of investigation into distributed connectivity disturbances in ADHD. Current models emphasize abnormal relationships between default network—involved in internally directed mentation and lapses of attention—and task positive networks, especially ventral attention network. However, studies that comprehensively investigate interrelationships between large‐scale networks in ADHD remain relatively rare. Methods Resting state functional magnetic resonance imaging scans were obtained from 757 participants at seven sites in the ADHD‐200 multisite sample. Functional connectomes were generated for each subject, and interrelationships between seven large‐scale brain networks were examined with network contingency analysis. Results ADHD brains exhibited altered resting state connectivity between default network and ventral attention network [ P  < 0.0001, false discovery rate (FDR)‐corrected], including prominent increased connectivity (more specifically, diminished anticorrelation) between posterior cingulate cortex in default network and right anterior insula and supplementary motor area in ventral attention network. There was distributed hypoconnectivity within default network ( P  = 0.009, FDR‐corrected), and this network also exhibited significant alterations in its interconnections with several other large‐scale networks. Additionally, there was pronounced right lateralization of aberrant default network connections. Conclusions Consistent with existing theoretical models, these results provide evidence that default network‐ventral attention network interconnections are a key locus of dysfunction in ADHD. Moreover, these findings contribute to growing evidence that distributed dysconnectivity within and between large‐scale networks is present in ADHD. Hum Brain Mapp 35:4693–4705, 2014 . © 2014 Wiley Periodicals, Inc .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/107992/1/hbm22504.pd

    Neuroimaging-Based Classification of PTSD Using Data-Driven Computational Approaches:A Multisite Big Data Study from the ENIGMA-PGC PTSD Consortium

    Get PDF
    BACKGROUND: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group.METHODS: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality.RESULTS: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60% test AUC for s-MRI, 59% for rs-fMRI and 56% for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75% AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance.CONCLUSION: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.</p
    corecore