58 research outputs found

    Impact perforation testing of stab-resistant armour materials

    Get PDF
    This paper describes the development of a method for the investigation and comparison of materials for use in stab resistant body armour. A number of polymer composite panels of different thicknesses and construction have been tested. A dynamic test which simulated the real threat has been used and the results compared to a simpler quasi-static test that might be used in initial materials selection. The materials tested were glass-epoxy, and glass-nylon composite panels of several thicknesses between 1.8 and 5.8mm. Additional tests were also performed on similar composites containing tungsten wires. An accelerated instrumented drop-tower was used to drive a knife through composite panels and record the force resisting penetration by the knife. The final penetration of the knife through the armour into a soft backing was also measured. For comparison,a similar geometry quasi-static test was carried out on the same specimens. It was found that energy absorbtion took the form of an initial resistance to perforation and then by a resistance to further penetration. This is thought to stem from resistance to cutting ofthe panel material and gripping of the knife blade. The energy required to produce a given penetration in dynamic tests was found to be in good agreement with the penetration achieved at similar energies under quasi-static conditions. For the materials tested there was no significant difference between the penetration resistance of single or two layer systems. The penetration achieved through a panel of a given material was approximately proportional to the inverse square of the panel's thickness. The relative performance of different armour materials was assessed by plotting the energy required to penetrate a fixed distance against the areal density of the panel

    Comparative Demography of the Spider Mite, Oligonychus afrasiaticus, on four Date Palm Varieties in Southwestern Tunisia

    Get PDF
    The date palm mite, Oligonychus afrasiaticus (McGregor) (Acari: Tetranychidae), is a serious pest of palm date fruits. Life cycle, fecundity, and longevity of this mite were studied on fruits of four date palms, Phoenix dactylifera L. (Arecales: Arecaceae)(varieties: Deglet Noor, Alig, Kentichi, and Besser), under laboratory conditions at 27 = 1 °C, 60 ± 10% RH. Total development time of immature female was shorter on Deglet Noor fruits than on the other cultivars. O. afrasiaticus on Deglet Noor had the highest total fecundity per female, while low fecundity values occurred on Besser. The comparison of intrinsic rates of natural increase (rm), net reproductive rates (Ro), and the survival rates of immature stage of O. afrasiaticus on the host plants suggests that O. afrasiaticus performs better on Deglet Noor fruits. The mite feeding on Alig showed the lowest intrinsic rate of natural population increase (rm = 0.103 day 1). The estimation of difference in susceptibility of cultivars to O. afrasiaticus is crucial for developing efficient pest control programs. Indeed, less susceptible cultivars can either be left unsprayed or sprayed at low threshold

    Control of Aleurocanthus woglumi

    No full text

    Specification for the TITANIA KrF laser system

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:8053.4153(RAL--94-014) / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore