13 research outputs found

    Decay of Spin-One Particle into Two Photons in Presence of Uniform External Magnetic Field

    Full text link
    Yang's theorem states that an initial J=1 state cannot decay into two photons. Because of this result some reactions relating to elementary particles or atomic transitions can be ruled out. The theorem is not valid in the presence of background electric or magnetic fields. In this work we show that the decay of a J=1 particle into two photons is permitted by Bose symmetry and rotational invariance when the background of the decay process is not pure vacuum but contains an external classical magnetic/electric field. We also discuss constraints on these amplitudes from {\bf CP} invariance.Comment: Tex fil

    Out-of-equilibrium dynamics of Bose-Bose mixtures in optical lattices

    Full text link
    We examine the quench dynamics across quantum phase transitions from a Mott insulator (MI) to a superfluid (SF) phase in a two-component bosonic mixture in an optical lattice. We show that two-component Bose mixtures exhibit qualitatively different quantum dynamics than one-component Bose gas. Besides second-order MI-SF transitions, we also investigate quench dynamics across a first-order MI-SF transition. The Bose mixtures show the critical slowing down of dynamics near the critical transition point, as proposed by the Kibble-Zurek mechanism. For MI-SF transitions with homogeneous lattice-site distributions in the MI phase, the dynamical critical exponents extracted by the power-law scaling of the proposed quantities obtained via numerical simulations are in very close agreement with the mean-field predictions.Comment: 10 pages, 11 figure

    Staggered superfluid phases of dipolar bosons in two-dimensional square lattices

    Full text link
    We study the quantum ground state of ultracold bosons in a two-dimensional square lattice. The bosons interact via the repulsive dipolar interactions and s-wave scattering. The dynamics is described by the extended Bose-Hubbard model including correlated hopping due to the dipolar interactions, the coefficients are found from the second quantized Hamiltonian using the Wannier expansion with realistic parameters. We determine the phase diagram using the Gutzwiller ansatz in the regime where the coefficients of the correlated hopping terms are negative and can interfere with the tunneling due to single-particle effects. We show that this interference gives rise to staggered superfluid and supersolid phases at vanishing kinetic energy, while we identify parameter regions at finite kinetic energy where the phases are incompressible. We compare the results with the phase diagram obtained with the cluster Gutzwiller approach and with the results found in one dimension using DMRG.Comment: version close to accepted in Phys. Rev.

    Quantum spectrum as a time series : Fluctuation measures

    Full text link
    The fluctuations in the quantum spectrum could be treated like a time series. In this framework, we explore the statistical self-similarity in the quantum spectrum using the detrended fluctuation analysis (DFA) and random matrix theory (RMT). We calculate the Hausdorff measure for the spectra of atoms and Gaussian ensembles and study their self-affine properties. We show that DFA is equivalent to Δ3\Delta_3 statistics of RMT, unifying two different approaches.We exploit this connection to obtain theoretical estimates for the Hausdorff measure.Comment: 4+ pages. 2 figure
    corecore