6 research outputs found

    Cambial activity in the understory of the Mayombe forest, DR Congo

    No full text
    Understanding species-specific response as well as wedging and zero xylem growth is vital for tree-ring analysis of tropical understory trees. Knowledge on intra-annual xylem growth remains understudied in tropical regions, especially for understory species. However, it is important to disentangle seasonal tree response in this complex environment. The aim is to assess intra-annual wood formation and its variability in selected understory tree species of a semi-deciduous tropical forest. The cambium of four species from the Luki reserve of the Mayombe (DR Congo) was monthly marked at the stem base via the pinning method. To assess ring anomalies on the stem disks, digitization of the last 5-10 rings was performed along the circumference. Relative growth was determined based on X-ray CT volumes of the pinning zone, as well as on sanded surfaces and microsections. Stem disks allowed to visualize ring anomalies and growth variations. Intra-annual growth was successfully derived via X-ray CT and could be fitted with a Gompertz function. A species-specific response is observed, although there is circumferential variability. However, the most remarkable result is that many of the trees in the data set had no xylem formation at the stem base, throughout the entire season, thus forming missing rings. Intra-annual variability in growth illustrates the different responses of species and individual trees to environmental drivers. Phenology might explain the differences, although site and competition should be considered as well. A large number of trees show no xylem growth at all, apart from wound-induced local growth, causing missing rings which have important implications for the tree-ring analysis in tropical regions

    Historical tree phenology data reveal the seasonal rhythms of the Congo Basin rainforest.

    Full text link
    peer reviewedTropical forest phenology directly affects regional carbon cycles, but the relation between species-specific and whole-canopy phenology remains largely uncharacterized. We present a unique analysis of historical tropical tree phenology collected in the central Congo Basin, before large-scale impacts of human-induced climate change. Ground-based long-term (1937-1956) phenological observations of 140 tropical tree species are recovered, species-specific phenological patterns analyzed and related to historical meteorological records, and scaled to characterize stand-level canopy dynamics. High phenological variability within and across species and in climate-phenology relationships is observed. The onset of leaf phenophases in deciduous species was triggered by drought and light availability for a subset of species and showed a species-specific decoupling in time along a bi-modal seasonality. The majority of the species remain evergreen, although central African forests experience relatively low rainfall. Annually a maximum of 1.5% of the canopy is in leaf senescence or leaf turnover, with overall phenological variability dominated by a few deciduous species, while substantial variability is attributed to asynchronous events of large and/or abundant trees. Our results underscore the importance of accounting for constituent signals in canopy-wide scaling and the interpretation of remotely sensed phenology signals

    Genetic breaks caused by ancient forest fragmentation: phylogeography of Staudtia kamerunensis (Myristicaceae) reveals distinct clusters in the Congo Basin

    No full text
    Abstract Documenting species and population diversity is becoming increasingly important as the destruction and degradation of natural ecosystems are leading to a worldwide biodiversity loss. Despite the rapid development of genetic tools, many species remain undocumented and little is known about the diversity of individuals and populations, especially for tropical African plants. In this study, we aim to identify putative hidden species and/or differentiated populations in the tropical African tree Staudtia kamerunensis Warb. (Myristicaceae), a widespread species characterized by a high morphological diversity and a complex taxonomical history. Historical herbarium vouchers were sampled and leaf or cambium samples were collected in the field, dried in silica gel, and subsequently genotyped at 14 microsatellite loci (SSRs), as well as sequenced for two nuclear genes ( At103 ,Agt1 ) and one plastid region ( psbA-trnH ). These genetic data were then analyzed using Bayesian clustering, population genetics, and the construction of haplowebs to assess genetic clustering patterns, the distribution of genetic diversity, and genetic differentiation among populations. Multiple genetically differentiated clusters were observed in parapatry throughout Central Africa. Genetic diversity was high and similar among these clusters, apart from the most differentiated populations in southeast Democratic Republic of the Congo (DR Congo), which showed lower levels of genetic diversity. The genetic breaks detected between S. kamerunensis populations are likely not indicative of hidden species but rather result from ancient rainforest fragmentation during cold and dry periods in the Pliocene and/or Pleistocene. The strong genetic divergence between populations in southeast DR Congo could be the result of an ongoing speciation linked to ecological niche differentiation.info:eu-repo/semantics/publishe
    corecore