50 research outputs found

    Bragg spectroscopy with an accelerating Bose-Einstein condensate

    Full text link
    We present the results of Bragg spectroscopy performed on an accelerating Bose-Einstein condensate. The Bose condensate undergoes circular micro-motion in a magnetic TOP trap and the effect of this motion on the Bragg spectrum is analyzed. A simple frequency modulation model is used to interpret the observed complex structure, and broadening effects are considered using numerical solutions to the Gross-Pitaevskii equation.Comment: 5 pages, 3 figures, to appear in PRA. Minor changes to text and fig

    Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect

    Full text link
    We present a stochastic theory for the nonequilibrium dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle's worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.Comment: Invited talk given by BLH at the International Assembly on Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1 figur

    Autofeedback scheme for preservation of macroscopic coherence in microwave cavities

    Full text link
    We present a scheme for controlling the decoherence of a linear superposition of two coherent states with opposite phases in a high-Q microwave cavity, based on the injection of appropriately prepared ``probe'' and ``feedback'' Rydberg atoms, improving the one presented in [D. Vitali et al., Phys. Rev. Lett. 79, 2442 (1997)]. In the present scheme, the information transmission from the probe to the feedback atom is directly mediated by a second auxiliary cavity. The detection efficiency for the probe atom is no longer a critical parameter, and the decoherence time of the superposition state can be significantly increased using presently available technology.Comment: revtex, 15 pages, 4 eps figure

    Energy band structure and intrinsic coherent properties in two weakly linked Bose Einstein Condensates

    Full text link
    The energy band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose Josephson junction were investigated in terms of energy splitting. For EC/EJ≪1E_{C}/E_{J}\ll 1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, EC/EJ≫1E_{C}/E_{J}\gg 1, the energy splitting is large and the system becomes a phase dissipation. Our reslults suggest that one should investigate the coherence phenomna of BJJ in proper condition such as EC/EJ∼1E_{C}/E_{J}\sim 1.Comment: to appear in Phys. Rev. A, 2 figure

    Decoherence, irreversibility and the selection by decoherence of quantum states with definite probabilities

    Full text link
    The problem investigated in this paper is einselection, i. e. the selection of mutually exclusive quantum states with definite probabilities through decoherence. Its study is based on a theory of decoherence resulting from the projection method in the quantum theory of irreversible processes, which is general enough for giving reliable predictions. This approach leads to a definition (or redefinition) of the coupling with the environment involving only fluctuations. The range of application of perturbation calculus is then wide, resulting in a rather general master equation. Two distinct cases of decoherence are then found: (i) A ``degenerate'' case (already encountered with solvable models) where decoherence amounts essentially to approximate diagonalization; (ii) A general case where the einselected states are essentially classical. They are mixed states. Their density operators are proportional to microlocal projection operators (or ``quasi projectors'') which were previously introduced in the quantum expression of classical properties. It is found at various places that the main limitation in our understanding of decoherence is the lack of a systematic method for constructing collective observables.Comment: 54 page

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference
    corecore