19 research outputs found

    Circadian clock and vascular disease.

    Get PDF
    Cardiovascular functions, including blood pressure and vascular functions, show diurnal oscillation. Circadian variations have been clearly shown in the occurrence of cardiovascular events such as acute myocardial infarction. Circadian rhythm strongly influences human biology and pathology. The identification and characterization of mammalian clock genes revealed that they are expressed almost everywhere throughout the body in a circadian manner. In contrast to the central clock in the suprachiasmatic nucleus (SCN), the clock in each tissue or cell is designated as a peripheral clock. It is now accepted that peripheral clocks have their own roles specific to each peripheral organ by regulating the expression of clock-controlled genes (CCGs), although the oscillation mechanisms of the peripheral clock are similar to that of the SCN. However, little was known about how the peripheral clock in the vasculature contributes to the process of cardiovascular disorders. The biological clock allows each organ or cell to anticipate and prepare for changes in external stimuli. Recent evidence obtained using genetically engineered mice with disrupted circadian rhythm showed a novel function of the internal clock in the pathogenesis of endothelial dysfunction, hypertension and hemostasis. Loss of synchronization between the central and peripheral clock also contributes to the pathogenesis of cardiovascular diseases, as restoration of clock homeostasis could prevent disease progression. Identification of CCGs in each organ, as well as discovery of tools to manipulate the phase of each biological clock, will be of great help in establishing a novel chronotherapeutic approach to the prevention and treatment of cardiovascular disorders

    Characterization of the Hepatitis C Virus NS2/3 Processing Reaction by Using a Purified Precursor Protein

    No full text
    The NS2-NS3 region of the hepatitis C virus polyprotein encodes a proteolytic activity that is required for processing of the NS2/3 junction. Membrane association of NS2 and the autocatalytic nature of the NS2/3 processing event have so far constituted hurdles to the detailed investigation of this reaction. We now report the first biochemical characterization of the self-processing activity of a purified NS2/3 precursor. Using multiple sequence alignments, we were able to define a minimal domain, devoid of membrane-anchoring sequences, which was still capable of performing the processing reaction. This truncated protein was efficiently expressed and processed in Escherichia coli. The processing reaction could be significantly suppressed by growth in minimal medium in the absence of added zinc ions, leading to the accumulation of an unprocessed precursor protein in inclusion bodies. This protein was purified to homogeneity, refolded, and shown to undergo processing at the authentic NS2/NS3 cleavage site with rates comparable to those observed using an in vitro-translated full-length NS2/3 precursor. Size-exclusion chromatography and a dependence of the processing rate on the concentration of truncated NS2/3 suggested a functional multimerization of the precursor protein. However, we were unable to observe trans cleavage activity between cleavage-site mutants and active-site mutants. Furthermore, the cleavage reaction of the wild-type protein was not inhibited by addition of a mutant that was unable to undergo self-processing. Site-directed mutagenesis data and the independence of the processing rate from the nature of the added metal ion argue in favor of NS2/3 being a cysteine protease having Cys993 and His952 as a catalytic dyad. We conclude that a purified protein can efficiently reproduce processing at the NS2/3 site in the absence of additional cofactors
    corecore