379 research outputs found

    Energy conversion systems: the case study of compressed air, an introduction to a new simulation toolbox

    Get PDF
    The paper illustrates the simulation activities going on within the LABAC (laboratory of energy performance of compressed air systems) at the University of Pavia. The scope is to build up a simulator, based on a comprehensive energy model, en- abling the end-user both to improve the system efficiency, al- lowing modifications on the system configuration and/or the use of alternative devices, and to properly size a pneumatic network. The final use is both for educational and test pur- pose. The simulator represents the laboratory plant, where the generation unit, the receiver, the cleaning up equipment and the distribution of compressed air are set in place. For the modeling, the Xcos application, graphical Scilab interface, has been used; to emphasize the potential derived by the use of this simulator, the role of increasing storage unit/receiver is investigated with respect to the system energy consump- tion. Several testings have been performed. The simulation reported in this paper has been carried out for 4000 s and two different configurations are investigated: the living one with 0.5 m3 vs. the alternative 6.5 m3 storage tank. A detailed ap- proach to the identification of all equipment is proposed and energy and power considerations are reported

    A comparative study of Gaussian Graphical Model approaches for genomic data

    Get PDF
    The inference of networks of dependencies by Gaussian Graphical models on high-throughput data is an open issue in modern molecular biology. In this paper we provide a comparative study of three methods to obtain small sample and high dimension estimates of partial correlation coefficients: the Moore-Penrose pseudoinverse (PINV), residual correlation (RCM) and covariance-regularized method (â„“2C)(\ell_{2C}). We first compare them on simulated datasets and we find that PINV is less stable in terms of AUC performance when the number of variables changes. The two regularized methods have comparable performances but â„“2C\ell_{2C} is much faster than RCM. Finally, we present the results of an application of â„“2C\ell_{2C} for the inference of a gene network for isoprenoid biosynthesis pathways in Arabidopsis thaliana.Comment: 7 pages, 1 figure, RevTex4, version to appear in the proceedings of 1st International Workshop on Pattern Recognition, Proteomics, Structural Biology and Bioinformatics: PR PS BB 2011, Ravenna, Italy, 13 September 201

    Cooling of a Compact Star with a LOFF Matter Core

    Get PDF
    Specific heat and neutrino emissivity due to direct URCA processes for quark matter in the color superconductive Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase of Quantum-Chromodynamics have been evaluated. The cooling rate of simplified models of compact stars with a LOFF matter core is estimated.Comment: 3 pages, 1 figure, to appear in the proceedings of the Helmoltz International Summer School of Theoretical Physics on Dense Matter in Heavy Ion Collisions and Astrophysics, JINR, Dubna, Russia, 21 Aug - 1 Sep 200

    Caspase-independent programmed cell death triggers Ca2PO4 deposition in an in vitro model of nephrocalcinosis

    Get PDF
    We provide evidence of caspase-independent cell death triggering the calcification process in GDNF-silenced HK-2 cells

    Chiral crossover, deconfinement and quarkyonic matter within a Nambu-Jona Lasinio model with the Polyakov loop

    Full text link
    We study the interplay between the chiral and the deconfinement transitions, both at high temperature and high quark chemical potential, by a non local Nambu-Jona Lasinio model with the Polyakov loop in the mean field approximation and requiring neutrality of the ground state. We consider three forms of the effective potential of the Polyakov loop: two of them with a fixed deconfinement scale, cases I and II, and the third one with a ÎĽ\mu dependent scale, case III. In the cases I and II, at high chemical potential ÎĽ\mu and low temperature TT the main contribution to the free energy is due to the Z(3)-neutral three-quark states, mimicking the quarkyonic phase of the large NcN_c phase diagram. On the other hand in the case III the quarkyonic window is shrunk to a small region. Finally we comment on the relations of these results to lattice studies and on possible common prospects. We also briefly comment on the coexistence of quarkyonic and color superconductive phases.Comment: 16 pages, 7 figures, RevTeX4. Some typos corrected, references adde

    Superfluid and Pseudo-Goldstone Modes in Three Flavor Crystalline Color Superconductivity

    Full text link
    We study the bosonic excitations in the favorite cubic three flavor crystalline LOFF phases of QCD. We calculate in the Ginzburg-Landau approximation the masses of the eight pseudo Nambu-Goldstone Bosons (NGB) present in the low energy theory. We also compute the decay constants of the massless NGB Goldstones associated to superfluidity as well as those of the eight pseudo NGB. Differently from the corresponding situation in the Color-Flavor-Locking phase, we find that meson condensation phases are not expected in the present scenario.Comment: 10 pages, RevTeX4 class. Section IIIA enlarged, to appear on Phys. Rev.

    A diagrammatic derivation of the meson effective masses in the neutral color-flavor-locked phase of Quantum Chromodynamics

    Full text link
    We offer a diagrammatic derivation of the effective masses of the axial flavor excitations in the electrical and color neutral CFL phase of QCD. In particular we concentrate on the excitations with the quantum numbers of the kaons: we show how their effective chemical potentials, responsible of their Bose-Einstein condensation and found previously on the basis of pure symmetry arguments, arise at the microscopic level by loop effects. We perform also the numerical evaluation of the relevant loops in the whole CFL regime Ms2/2μΔ⩽1M_s^2/2\mu\Delta\leqslant 1, showing the existence of the enhancement of the kaon condensation with respect to the lowest order result. Finally we discuss the role of electrical and color neutrality in the microscopic calculation.Comment: 10 pages, 2 figures, RevTeX4 style. Version accepted for publication on JHEP. Some minor change in the tex

    Cell death in the kidney

    Get PDF
    Apoptotic cell death is usually a response to the cell’s microenvironment. In the kidney, apoptosis contributes to parenchymal cell loss in the course of acute and chronic renal injury, but does not trigger an inflammatory response. What distinguishes necrosis from apoptosis is the rupture of the plasma membrane, so necrotic cell death is accompanied by the release of unprocessed intracellular content, including cellular organelles, which are highly immunogenic proteins. The relative contribution of apoptosis and necrosis to injury varies, depending on the severity of the insult. Regulated cell death may result from immunologically silent apoptosis or from immunogenic necrosis. Recent advances have enhanced the most revolutionary concept of regulated necrosis. Several modalities of regulated necrosis have been described, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial permeability transition-dependent regulated necrosis. We review the different modalities of apoptosis, necrosis, and regulated necrosis in kidney injury, focusing particularly on evidence implicating cell death in ectopic renal calcification. We also review the evidence for the role of cell death in kidney injury, which may pave the way for new therapeutic opportunities

    An Experimental Validation of Phase-Based Motion Magnification for Structures with Developing Cracks and Time-Varying Configurations

    Get PDF
    In this study, Computer Vision and Phase-Based Motion Magnification (PBMM) are validated for continuous Structural Health Monitoring (SHM) purposes. The aim is to identify the exact instant of occurrence for damage or abrupt structural changes from video-extracted, very low amplitude (barely visible) vibrations. The study presents three experimental datasets: a box beam with multiple saw cuts of different lengths and angles, a beam with a full rectangular cross section and a mass added at the tip, and the spar of a prototype High-Aspect-Ratio wing. Both mode-shape- and frequency-based approaches are considered, showing the potential to identify the severity and position of the damage as well A high-definition, high-speed camera and a low-cost commercial alternative have been successfully utilised for these video acquisitions. Finally, the technique is also preliminarily tested for outdoor applications with smartphone cameras

    Neutrino emission from compact stars and inhomogeneous color superconductivity

    Get PDF
    We discuss specific heat and neutrino emissivity due to direct Urca processes for quark matter in the color superconductive Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase of Quantum-Chromodynamics. We assume that the three light quarks u,d,su, d, s are in a color and electrically neutral state and interact by a four fermion Nambu-Jona Lasinio coupling. We study a LOFF state characterized by a single plane wave for each pairing. From the evaluation of neutrino emissivity and fermionic specific heat, the cooling rate of simplified models of compact stars with a quark core in the LOFF state is estimated.Comment: 16 pages, 5 figures, revtex4 style. Version accepted for publication in Phys. Rev.
    • …
    corecore