24 research outputs found

    Rare exonic CELSR3 variants identified in Bladder Exstrophy Epispadias Complex

    Get PDF
    Introduction/backgroundBladder exstrophy epispadias complex (BEEC) is a rare congenital anomaly of unknown etiology, although, genetic and environmental factors have been associated with its development. Variants in several genes expressed in the urogenital pathway have been reported as causative for bladder exstrophy in human and murine models. The expansion of next-generation sequencing and molecular genomics has improved our ability to identify the underlying genetic causes of similarly complex diseases and could thus assist with the investigation of the molecular basis of BEEC.ObjectiveThe objective was to identify the presence of rare heterozygous variants in genes previously implicated in bladder exstrophy and correlate them with the presence or absence of bladder regeneration in our study population.Patients and MethodsWe present a case series of 12 patients with BEEC who had bladder biopsies performed by pediatric urology during bladder neck reconstruction or bladder augmentation. Cases were classified as “sufficient” or “insufficient” (n = 5 and 7, respectively) based on a bladder volume of greater than or less than 40% of expected bladder size. Control bladder tissue specimens were obtained from patients (n = 6) undergoing biopsies for conditions other than bladder exstrophy. Whole exome sequencing was performed on DNA isolated from the bladder specimens. Based on the hypothesis of de novo mutations, as well as the potential implications of autosomal dominant conditions with incomplete penetrance, each case was evaluated for autosomal dominant variants in a set of genes previously implicated in BEEC.ResultsOur review of the literature identified 44 genes that have been implicated in human models of bladder exstrophy. Our whole exome sequencing data analysis identified rare variants in two of these genes among the cases classified as sufficient, and seven variants in five of these genes among the cases classified as insufficient.ConclusionWe identified rare variants in seven previously implicated genes in our BEEC specimens. Additional research is needed to further understand the cellular signaling underlying this potentially genetically heterogeneous embryological condition

    Neonatal Survival After Serial Amnioinfusions for Bilateral Renal Agenesis: The Renal Anhydramnios Fetal Therapy Trial

    Get PDF
    IMPORTANCE: Early anhydramnios during pregnancy, resulting from fetal bilateral renal agenesis, causes lethal pulmonary hypoplasia in neonates. Restoring amniotic fluid via serial amnioinfusions may promote lung development, enabling survival. OBJECTIVE: To assess neonatal outcomes of serial amnioinfusions initiated before 26 weeks\u27 gestation to mitigate lethal pulmonary hypoplasia. DESIGN, SETTING, AND PARTICIPANTS: Prospective, nonrandomized clinical trial conducted at 9 US fetal therapy centers between December 2018 and July 2022. Outcomes are reported for 21 maternal-fetal pairs with confirmed anhydramnios due to isolated fetal bilateral renal agenesis without other identified congenital anomalies. EXPOSURE: Enrolled participants initiated ultrasound-guided percutaneous amnioinfusions of isotonic fluid before 26 weeks\u27 gestation, with frequency of infusions individualized to maintain normal amniotic fluid levels for gestational age. MAIN OUTCOMES AND MEASURES: The primary end point was postnatal infant survival to 14 days of life or longer with dialysis access placement. RESULTS: The trial was stopped early based on an interim analysis of 18 maternal-fetal pairs given concern about neonatal morbidity and mortality beyond the primary end point despite demonstration of the efficacy of the intervention. There were 17 live births (94%), with a median gestational age at delivery of 32 weeks, 4 days (IQR, 32-34 weeks). All participants delivered prior to 37 weeks\u27 gestation. The primary outcome was achieved in 14 (82%) of 17 live-born infants (95% CI, 44%-99%). Factors associated with survival to the primary outcome included a higher number of amnioinfusions (P = .01), gestational age greater than 32 weeks (P = .005), and higher birth weight (P = .03). Only 6 (35%) of the 17 neonates born alive survived to hospital discharge while receiving peritoneal dialysis at a median age of 24 weeks of life (range, 12-32 weeks). CONCLUSIONS AND RELEVANCE: Serial amnioinfusions mitigated lethal pulmonary hypoplasia but were associated with preterm delivery. The lower rate of survival to discharge highlights the additional mortality burden independent of lung function. Additional long-term data are needed to fully characterize the outcomes in surviving neonates and assess the morbidity and mortality burden

    Perinatal neuroprotection update

    No full text

    Perinatal neuroprotection update

    No full text
    Antepartum, intrapartum, and neonatal events can result in a spectrum of long-term neurological sequelae, including cerebral palsy, cognitive delay, schizophrenia, and autism spectrum disorders [1]. Advances in obstetrical and neonatal care have led to survival at earlier gestational ages and consequently increasing numbers of periviable infants who are at significant risk for long-term neurological deficits. Therefore, efforts to decrease and prevent cerebral insults attempt not only to decrease preterm delivery but also to improve neurological outcomes in infants delivered preterm. We recently published a comprehensive review addressing the impacts of magnesium sulfate, therapeutic hypothermia, delayed cord clamping, infections, and prevention of preterm delivery on the modification of neurological risk [2]. In this review, we will briefly provide updates to the aforementioned topics as well as an expansion on avoidance of toxin and infections, specifically the Zika virus

    Hypertelorism

    No full text
    corecore