91 research outputs found

    Georges Bataille’s ‘Ethics of Violence’

    Get PDF
    In this article I will focus on Georges Bataille’s understanding of violence, whose position and reaction to fascism and Nazi violence in particular have been questioned, and his political engagement has been characterised as ambiguous to say the least. This article focuses on Battaille’s understanding of violence. His position vis-à-vis and reaction to fascism in general and Nazi violence in particular has been questioned, and his political engagement has been characterised as ambiguous, to say the least. The article endeavours to throw some light on the thought of a philosopher whose attraction to violence, horror, anguish and death as equally as to love and life may easily allow his project to be misread. How can Bataille,imbued within the Nietzschean tradition of beyond good and evil, both call for a hypermorality of ‘holding nothing back!’ and make sense of Auschwitz as something humanly possible, yet resist any direct accusations of being a Nazi politics supporter? The article first contextualises Bataille’s ‘ethics of violence’ within his discussion of the heterogeneous and the science of heterology, then explains the nature of his fascination with violence and horror and finally considers his reaction to the reproaches mentioned above. In other words, this discussion can be read as revolving around a question and the attempt to answer it: what, according to Bataille, is one to make of or do with violence, and why? Is one to deny it as one does an enemy and a threat, come to terms with it as something inevitable or go after it as something necessary? But are these options easily distinguished, if one sees violence, indeed as a pharmakon

    Escape from senescence:molecular basis and therapeutic ramifications

    Get PDF
    Cellular senescence constitutes a stress response mechanism in reaction to a plethora of stimuli. Senescent cells exhibit cell-cycle arrest and altered function. While cell-cycle withdrawal has been perceived as permanent, recent evidence in cancer research introduced the so-called escape-from-senescence concept. In particular, under certain conditions, senescent cells may resume proliferation, acquiring highly aggressive features. As such, they have been associated with tumour relapse, rendering senescence less effective in inhibiting cancer progression. Thus, conventional cancer treatments, incapable of eliminating senescence, may benefit if revisited to include senolytic agents. To this end, it is anticipated that the assessment of the senescence burden in everyday clinical material by pathologists will play a crucial role in the near future, laying the foundation for more personalised approaches. Here, we provide an overview of the investigations that introduced the escape-from-senescence phenomenon, the identified mechanisms, as well as the major implications for pathology and therapy.</p

    Decoding of translation-regulating entities reveals heterogeneous translation deficiency patterns in cellular senescence

    Get PDF
    Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.</p

    Decoding of translation-regulating entities reveals heterogeneous translation deficiency patterns in cellular senescence

    Get PDF
    Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.</p

    Decoding of translation-regulating entities reveals heterogeneous translation deficiency patterns in cellular senescence

    Get PDF
    Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.</p

    Decoding of translation-regulating entities reveals heterogeneous translation deficiency patterns in cellular senescence

    Get PDF
    Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.</p

    Decoding of translation-regulating entities reveals heterogeneous translation deficiency patterns in cellular senescence

    Get PDF
    Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.</p

    A facile approach to hydrophilic oxidized fullerenes and their derivatives as cytotoxic agents and supports for nanobiocatalytic systems

    Get PDF
    A facile, environment-friendly, versatile and reproducible approach to the successful oxidation of fullerenes (oxC60) and the formation of highly hydrophilic fullerene derivatives is introduced. This synthesis relies on the widely known Staudenmaier’s method for the oxidation of graphite, to produce both epoxy and hydroxy groups on the surface of fullerenes (C60) and thereby improve the solubility of the fullerene in polar solvents (e.g. water). The presence of epoxy groups allows for further functionalization via nucleophilic substitution reactions to generate new fullerene derivatives, which can potentially lead to a wealth of applications in the areas of medicine, biology, and composite materials. In order to justify the potential of oxidized C60 derivatives for bio-applications, we investigated their cytotoxicity in vitro as well as their utilization as support in biocatalysis applications, taking the immobilization of laccase for the decolorization of synthetic industrial dyes as a trial case.Peer ReviewedPostprint (published version

    One-step rapid tracking and isolation of senescent cells in cellular systems, tissues, or animal models via GLF16

    Get PDF
    Identification and isolation of senescent cells is challenging, rendering their detailed analysis an unmet need. We describe a precise one-step protocol to fluorescently label senescent cells, for flow cytometry and fluorescence microscopy, implementing a fluorophore-conjugated Sudan Black-B analog, GLF16. Also, a micelle-based approach allows identification of senescent cells in vivo and in vitro, enabling live-cell sorting for downstream analyses and live in vivo tracking. Our protocols are applicable to cellular systems, tissues, or animal models where senescence is present. For complete details on the use and execution of this protocol, please refer to Magkouta et al.</p
    • …
    corecore