470 research outputs found
The relationship between fragility, configurational entropy and the potential energy landscape of glass forming liquids
Glass is a microscopically disordered, solid form of matter that results when
a fluid is cooled or compressed in such a fashion that it does not crystallise.
Almost all types of materials are capable of glass formation -- polymers, metal
alloys, and molten salts, to name a few. Given such diversity, organising
principles which systematise data concerning glass formation are invaluable.
One such principle is the classification of glass formers according to their
fragility\cite{fragility}. Fragility measures the rapidity with which a
liquid's properties such as viscosity change as the glassy state is approached.
Although the relationship between features of the energy landscape of a glass
former, its configurational entropy and fragility have been analysed previously
(e. g.,\cite{speedyfr}), an understanding of the origins of fragility in these
features is far from being well established. Results for a model liquid, whose
fragility depends on its bulk density, are presented in this letter. Analysis
of the relationship between fragility and quantitative measures of the energy
landscape (the complicated dependence of energy on configuration) reveal that
the fragility depends on changes in the vibrational properties of individual
energy basins, in addition to the total number of such basins present, and
their spread in energy. A thermodynamic expression for fragility is derived,
which is in quantitative agreement with {\it kinetic} fragilities obtained from
the liquid's diffusivity.Comment: 8 pages, 3 figure
Glass transition with decreasing correlation length during cooling of Fe50Co50 superlattice and strong liquids
The glass transition GT is usually thought of as a structural arrest that
occurs during the cooling of a liquid, or sometimes a plastic crystal, trapping
a metastable state of the system before it can recrystallize to stabler forms1.
This phenomenon occurs in liquids of all classes, most recently in bulk
metallic glassformers2. Much theoretical interest has been generated by the
dynamical heterogeneity observed in cooling of fragile liquids3, 4, and many
have suggested that the slow-down is caused by a related increasing correlation
length 5-9. Here we report both kinetics and thermodynamics of arrest in a
system that disorders while in its ground state, exhibits a large !Cp on arrest
(!Cp = Cp,mobile - Cp,arrested), yet clearly is characterized by a correlation
length that is decreasing as GT is approached from above. We show that GT
kinetics in our system, the disordering superlattice Fe50Co50, satisfy the
kinetic criterion for ideally 'strong' glassformers10, and since !Cp behavior
through Tg also correlates10, we propose that very strong liquidsand very
fragile liquids exist on opposite flanks of an order-disorder transition - one
that is already known for model systems
Effect of entropy on the dynamics of supercooled liquids: New results from high pressure data
We show that for arbitrary thermodynamic conditions, master curves of the
entropy are obtained by expressing S(T,V) as a function of TV^g_G, where T is
temperature, V specific volume, and g_G the thermodynamic Gruneisen parameter.
A similar scaling is known for structural relaxation times,tau = f(TV^g);
however, we find g_G < g. We show herein that this inequality reflects
contributions to S(T,V) from processes, such as vibrations and secondary
relaxations, that do not directly influence the supercooled dynamics. An
approximate method is proposed to remove these contributions, S_0, yielding the
relationship tau = f(S-S_0).Comment: 10 pages 7 figure
Configurational Entropy and Diffusivity of Supercooled Water
We calculate the configurational entropy S_conf for the SPC/E model of water
for state points covering a large region of the (T,rho) plane. We find that (i)
the (T,rho) dependence of S_conf correlates with the diffusion constant and
(ii) that the line of maxima in S_conf tracks the line of density maxima. Our
simulation data indicate that the dynamics are strongly influenced by S_conf
even above the mode-coupling temperature T_MCT(rho).Comment: Significant update of reference
Direct observation of molecular cooperativity near the glass transition
We describe direct observations of molecular cooperativity near the glass
transition in poly-vinyl-acetate (PVAc), through nanometer-scale probing of
dielectric fluctuations. Molecular clusters switched spontaneously between two
to four distinct configurations, producing complex random-telegraph-signals
(RTS). Analysis of the RTS and their power spectra shows that individual
clusters exhibit both transient dynamical heterogeneity and non-exponential
kinetics.Comment: 14 pages pdf, need Acrobat Reade
Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition
This paper is a comprehensive review of the state-of-knowledge in the field of radiation effects in glasses that are to be used for the immobilization of high-level nuclear waste and plutonium disposition. The current status and issues in the area of radiation damage processes, defect generation, microstructure development, theoretical methods and experimental methods ase reviewed. Questions of fundamental and technological interest that offer opportunities for research are identified
Liquid Polymorphism and Double Criticality in a Lattice Gas Model
We analyze the possible phase diagrams of a simple model for an associating
liquid proposed previously. Our two-dimensional lattice model combines
oreintati onal ice-like interactions and \"{}Van der Waals\"{} interactions
which may be repulsive, and in this case represent a penalty for distortion of
hydrogen bonds in the presence of extra molecules. These interactions can be
interpreted in terms of two competing distances, but not necessarily soft-core.
We present mean -field calculations and an exhaustive simulation study for
different parameters which represent relative strength of the bonding
interaction to the energy penalty for its distortion. As this ratio decreases,
a smooth disappearance of the doubl e criticality occurs. Possible connections
to liquid-liquid transitions of molecul ar liquids are suggested
Irreversible reorganization in a supercooled liquid originates from localised soft modes
The transition of a fluid to a rigid glass upon cooling is a common route of
transformation from liquid to solid that embodies the most poorly understood
features of both phases1,2,3. From the liquid perspective, the puzzle is to
understand stress relaxation in the disordered state. From the perspective of
solids, the challenge is to extend our description of structure and its
mechanical consequences to materials without long range order. Using computer
simulations, we show that the localized low frequency normal modes of a
configuration in a supercooled liquid are causally correlated to the
irreversible structural reorganization of the particles within that
configuration. We also demonstrate that the spatial distribution of these soft
local modes can persist in spite of significant particle reorganization. The
consequence of these two results is that it is now feasible to construct a
theory of relaxation length scales in glass-forming liquids without recourse to
dynamics and to explicitly relate molecular properties to their collective
relaxation.Comment: Published online: 20 July 2008 | doi:10.1038/nphys1025 Available from
http://www.nature.com/nphys/journal/v4/n9/abs/nphys1025.htm
Topological Quantum Glassiness
Quantum tunneling often allows pathways to relaxation past energy barriers
which are otherwise hard to overcome classically at low temperatures. However,
this is not always the case. In this paper we provide simple exactly solvable
examples where the barriers each system encounters on its approach to lower and
lower energy states become increasingly large and eventually scale with the
system size. If the environment couples locally to the physical degrees of
freedom in the system, tunnelling under large barriers requires processes whose
order in perturbation theory is proportional to the width of the barrier. This
results in quantum relaxation rates that are exponentially suppressed in system
size: For these quantum systems, no physical bath can provide a mechanism for
relaxation that is not dynamically arrested at low temperatures. The examples
discussed here are drawn from three dimensional generalizations of Kitaev's
toric code, originally devised in the context of topological quantum computing.
They are devoid of any local order parameters or symmetry breaking and are thus
examples of topological quantum glasses. We construct systems that have slow
dynamics similar to either strong or fragile glasses. The example with
fragile-like relaxation is interesting in that the topological defects are
neither open strings or regular open membranes, but fractal objects with
dimension .Comment: (18 pages, 4 figures, v2: typos and updated figure); Philosophical
Magazine (2011
A thermodynamic unification of jamming
Fragile materials ranging from sand to fire-retardant to toothpaste are able
to exhibit both solid and fluid-like properties across the jamming transition.
Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to
flow under conditions that still remain unknown. Here we quantify jamming via a
thermodynamic approach by accounting for the structural ageing and the
shear-induced compressibility of dry sand. Specifically, the jamming threshold
is defined using a non-thermal temperature that measures the 'fluffiness' of a
granular mixture. The thermodynamic model, casted in terms of pressure,
temperature and free-volume, also successfully predicts the entropic data of
five molecular glasses. Notably, the predicted configurational entropy avoids
the Kauzmann paradox entirely. Without any free parameters, the proposed
equation-of-state also governs the mechanism of shear-banding and the
associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure
- …