7,365 research outputs found
An exact representation of the fermion dynamics in terms of Poisson processes and its connection with Monte Carlo algorithms
We present a simple derivation of a Feynman-Kac type formula to study
fermionic systems. In this approach the real time or the imaginary time
dynamics is expressed in terms of the evolution of a collection of Poisson
processes. A computer implementation of this formula leads to a family of
algorithms parametrized by the values of the jump rates of the Poisson
processes. From these an optimal algorithm can be chosen which coincides with
the Green Function Monte Carlo method in the limit when the latter becomes
exact.Comment: 4 pages, 1 PostScript figure, REVTe
Exact ground state for a class of matrix Hamiltonian models: quantum phase transition and universality in the thermodynamic limit
By using a recently proposed probabilistic approach, we determine the exact
ground state of a class of matrix Hamiltonian models characterized by the fact
that in the thermodynamic limit the multiplicities of the potential values
assumed by the system during its evolution are distributed according to a
multinomial probability density. The class includes i) the uniformly fully
connected models, namely a collection of states all connected with equal
hopping coefficients and in the presence of a potential operator with arbitrary
levels and degeneracies, and ii) the random potential systems, in which the
hopping operator is generic and arbitrary potential levels are assigned
randomly to the states with arbitrary probabilities. For this class of models
we find a universal thermodynamic limit characterized only by the levels of the
potential, rescaled by the ground-state energy of the system for zero
potential, and by the corresponding degeneracies (probabilities). If the
degeneracy (probability) of the lowest potential level tends to zero, the
ground state of the system undergoes a quantum phase transition between a
normal phase and a frozen phase with zero hopping energy. In the frozen phase
the ground state condensates into the subspace spanned by the states of the
system associated with the lowest potential level.Comment: 31 pages, 13 figure
Comment on "Why quantum mechanics cannot be formulated as a Markov process"
In the paper with the above title, D. T. Gillespie [Phys. Rev. A 49, 1607,
(1994)] claims that the theory of Markov stochastic processes cannot provide an
adequate mathematical framework for quantum mechanics. In conjunction with the
specific quantum dynamics considered there, we give a general analysis of the
associated dichotomic jump processes. If we assume that Gillespie's
"measurement probabilities" \it are \rm the transition probabilities of a
stochastic process, then the process must have an invariant (time independent)
probability measure. Alternatively, if we demand the probability measure of the
process to follow the quantally implemented (via the Born statistical
postulate) evolution, then we arrive at the jump process which \it can \rm be
interpreted as a Markov process if restricted to a suitable duration time.
However, there is no corresponding Markov process consistent with the
event space assumption, if we require its existence for all times .Comment: Latex file, resubm. to Phys. Rev.
"All on short" prosthetic-implant supported rehabilitations
Objectives. Short implants are increasing their popularity among clinicians who want to fulfill the constant demanding of fixed prosthetic solutions in edentulous jaws. The aim of this report was to propose a new possibility to project and realize an occlusal guided implant cross-arch prosthesis supported by ultra-short implants, describing it presented an edentulous mandible case report. Methods. A 61-year-old, Caucasian, female patient who attended the dental clinic of the University of L’Aquila presented with edentulous posterior inferior jaw and periodontitis and periimplantitis processes in the anterior mandible. The remaining tooth and the affected implant were removed. Six 4-mm-long implants were placed to support a cross-arch metal-resin prosthesis. Results. At 1-year follow-up clinical and radiological assessment showed a good osseointegration of the fixtures and the patient was satisfied with the prosthesis solution. Conclusion. The method, even if it requires further validation, seems to be a valid aid in solving lower edentulous clinical cases, and appears less complex and with more indications of other proposals presented in the current clinical literature. Our case report differs from the current technique All-on-Four, which uses four implants in the mandible to support overdenture prosthesis, assuring a very promising clinical resul
Analytical probabilistic approach to the ground state of lattice quantum systems: exact results in terms of a cumulant expansion
We present a large deviation analysis of a recently proposed probabilistic
approach to the study of the ground-state properties of lattice quantum
systems. The ground-state energy, as well as the correlation functions in the
ground state, are exactly determined as a series expansion in the cumulants of
the multiplicities of the potential and hopping energies assumed by the system
during its long-time evolution. Once these cumulants are known, even at a
finite order, our approach provides the ground state analytically as a function
of the Hamiltonian parameters. A scenario of possible applications of this
analyticity property is discussed.Comment: 26 pages, 5 figure
Aesthetic satisfaction in lip and palate clefts: a comparative study between secondary and tertiary bone grafting
Lip and palate cleft represent one of the most frequently occurring congenital deformity, which includes dental anomalies, such as variation in tooth number and position. In case of hypodontia implant-prosthetic rehabilitation offers significant advantages in terms of function, aesthetics and quality of life and bone graft is usually needed. Secondary bone grafting, generally performed in the mixed dentition phase (years 8-11) seems to be the most successful method to allow for rehabilitation. It's often necessary to perform a tertiary bone grafting in adult age in order to achieve better bone quantity and quality before implant placement. Aim of this retrospective study was to evaluate the aesthetic perception that patients had of themselves comparing dental implants placed in tertiary grafted alveolar cleft sites with a previous secondary grafting to only secondary grafting. Between 2009 and 2012, fourteen alveolar cleft were treated with implant rehabilitation and eleven of them received tertiary bone grafting six months prior to implant placement. All patients were questioned to give a score from 1 to 10 their aesthetic satisfaction of their smile before and after implant rehabilitation and during pre-surgery provisional rehabilitation. At the end of their prosthesis rehabilitation patients who received tertiary bone grafting resulted more satisfied than those who had secondary bone grafting only (9.5 vs 8)
Phase-change chalcogenide glass metamaterial
Combining metamaterials with functional media brings a new dimension to their
performance. Here we demonstrate substantial resonance frequency tuning in a
photonic metamaterial hybridized with an electrically/optically switchable
chalcogenide glass. The transition between amorphous and crystalline forms
brings about a 10% shift in the near-infrared resonance wavelength of an
asymmetric split-ring array, providing transmission modulation functionality
with a contrast ratio of 4:1 in a device of sub-wavelength thickness.Comment: 3 pages, 3 figure
Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity
The sub-wavelength concentration and propagation of electromagnetic energy are two complementary aspects of plasmonics that are not necessarily co-present in a single nanosystem. Here we exploit the strong nanofocusing properties of stacked optical antennas in order to highly concentrate the electromagnetic energy into a 5 nm metal-insulator-metal (MIM) cavity and convert free radiation into guided modes. The proposed nano-architecture combines the concentration properties of optical nanoantennas with the propagation capability of MIM systems, paving the way to highly miniaturized on-chip plasmonic waveguiding
- …