5 research outputs found

    Function Follows Form: From Semiconducting to Metallic toward Superconducting PbS Nanowires by Faceting the Crystal

    Get PDF
    In the realm of colloidal nanostructures, with its immense capacity for shape and dimensionality control, the form is undoubtedly a driving factor for the tunability of optical and electrical properties in semiconducting or metallic materials. However, influencing the fundamental properties is still challenging and requires sophisticated surface or dimensionality manipulation. In this work, we present such a modification for the example of colloidal lead sulphide nanowires. We show that the electrical properties of lead sulphide nanostructures can be altered from semiconducting to metallic with indications of superconductivity, by exploiting the flexibility of the colloidal synthesis to sculpt the crystal and to form different surface facets. A particular morphology of lead sulphide nanowires has been synthesized through the formation of {111} surface facets, which shows metallic and superconducting properties in contrast to other forms of this semiconducting crystal, which contain other surface facets ({100} and {110}). This effect, which has been investigated with several experimental and theoretical approaches, is attributed to the presence of lead rich {111} facets. The insights promote new strategies for tuning the properties of crystals as well as new applications for lead sulphide nanostructures.Comment: 23 pages, 6 figure

    Development of an interdisciplinary, intercultural master's program on sustainability:Learning from the richness of diversity

    No full text
    The purpose of this article is to describe a joint effort between three European and six Latin American universities to create an international Master's degree program on Sustainable Development and Management. Faculty members from these institutions are working together on this unusual and innovative project, which recognizes the importance of ICT (Information and Communication Technology) tools in international projects and programs. The article provides information about the ongoing interdisciplinary and intercultural dialogue and the learning process that is occurring throughout the development of the program.</p

    From Dots to Stripes to Sheets: Shape Control of Lead Sulfide Nanostructures

    No full text
    Controlling anisotropy in nanostructures is a challenging but rewarding task because confinement in one or more dimensions influences the physical and chemical properties of the items decisively. In particular, semiconducting nanostructures can be tailored to gain optimized properties to work as transistors or absorber material in solar cells. We demonstrate that the shape of colloidal lead sulfide nanostructures can be tuned from spheres to stripes to sheets by means of the precursor concentrations, the concentration of a chloroalkane coligand and the synthesis temperature. All final structures still possess at least one dimension in confinement. The structures cover all dimensionalities from 0D to 3D. Additionally, the effect of temperature on the shape and thickness of PbS nanosheets is shown and electrical transport measurements complement the findings

    Function Follows Form: From Semiconducting to Metallic toward Superconducting PbS Nanowires by Faceting the Crystal

    No full text
    In the realm of colloidal nanostructures, with their immense capacity for shape and dimensionality control, the form is undoubtedly a driving factor for the tunability of optical and electrical properties in semiconducting or metallic materials. However, influencing the fundamental properties is still challenging and requires sophisticated surface or dimensionality manipulation. Such a modification is presented for the example of colloidal lead‐sulfide nanowires. It is shown that the electrical properties of lead sulfide nanostructures can be altered from semiconducting to metallic with indications of superconductivity, by exploiting the flexibility of the colloidal synthesis to sculpt the crystal and to form different surface facets. A particular morphology of lead sulfide nanowires is prepared through the formation of {111} surface facets, which shows metallic and superconducting properties in contrast to other forms of this semiconducting crystal, which contain other surface facets ({100} and {110}). This effect, which is investigated with several experimental and theoretical approaches, is attributed to the presence of lead‐rich {111} facets. The insights promote new strategies for tuning the properties of crystals and new applications for lead sulfide nanostructures
    corecore