72 research outputs found

    Surveillance of the Performance of Elastomeric Bearings in Marylands Concrete Bridges

    Get PDF
    This thesis presents an investigation of the performance of elastomeric bearings in concrete girder bridges. Varying design practices create unpredictable performance in the field. The goal of the research is to correlate the AASHTO design parameters to a bearings performance in the field and further to make recommendations to improve as well as reduce the variability of the design for elastomeric bearings. A field study was performed to collect data on the condition of bearings in over 80 bridges. Each bearing was given a PONTIS condition rating in order to quantify the level of degradation and to perform analysis. The results from a spreadsheet analysis were either confirmed or rejected using a logistic regression analysis of the field data. Finite element analysis was used to verify preliminary recommendations from the field study and logistic regression. This study can conclude that limitations should be applied to the combined compression and rotation, the shape factor and the shear strains in elastomeric bearings

    Evaporation and clustering of ammonia droplets in a hot environment

    Get PDF
    Recent developments in the transition to zero-carbon fuels show that ammonia is a valid candidate for combustion. However, liquid ammonia combustion is difficult to stabilize due to a large latent heat of evaporation, which generates a strong cooling effect that adversely affects the flame stabilization and combustion efficiency. In addition, the slow burning rate of ammonia enhances the undesired production of NOx and N2O. To increase the flame speed, ammonia must be blended with a gaseous fuel having a high burning rate. In this context, a deeper understanding of the droplet dynamics is required to optimize the combustor design. To provide reliable physical insights into diluted ammonia sprays blended with gaseous methane, direct numerical simulations are employed. Three numerical experiments were performed with cold, standard, and hot ambient in nonreactive conditions. The droplet radius and velocity distribution, as well as the mass and heat coupling source terms are compared to study the effects on the evaporation. Since the cooling effect is stronger than the heat convection between the droplet and the environment in each case, ammonia droplets do not experience boiling. On the other hand, the entrainment of dry air into the ammonia-methane mixture moves the saturation level beyond 100% and droplets condense. The aforementioned phenomena are found to strongly affect the droplet evolution. Finally, a three-dimensional Voronoi analysis is performed to characterize the dispersive or clustering behavior of droplets by means of the definition of a clustering index

    A joint numerical study of multi-regime turbulent combustion

    Get PDF
    This article presents a joint numerical study on the Multi Regime Burner configuration. The burner design consists of three concentric inlet streams, which can be operated independently with different equivalence ratios, allowing the operation of stratified flames characterized by different combustion regimes, including premixed, non-premixed, and multi-regime flame zones. Simulations were performed on three LES solvers based on different numerical methods. Combustion kinetics were simplified by using tabulated or reduced chemistry methods. Finally, different turbulent combustion modeling strategies were employed, covering geometrical, statistical, and reactor based approaches. Due to this significant scattering of simulation parameters, a conclusion on specific combustion model performance is impossible. However, with ten numerical groups involved in the numerical simulations, a rough statistical analysis is conducted: the average and the standard deviation of the numerical simulation are computed and compared against experiments. This joint numerical study is therefore a partial illustration of the community's ability to model turbulent combustion. This exercise gives the average performance of current simulations and identifies physical phenomena not well captured today by most modeling strategies. Detailed comparisons between experimental and numerical data along radial profiles taken at different axial positions showed that the temperature field is fairly well captured up to 60 mm from the burner exit. The comparison reveals, however, significant discrepancies regarding CO mass fraction prediction. Three causes may explain this phenomenon. The first reason is the higher sensitivity of carbon monoxide to the simplification of detailed chemistry, especially when multiple combustion regimes are encountered. The second is the bias introduced by artificial thickening, which overestimates the species’ mass production rate. This behavior has been illustrated by manufacturing mean thickened turbulent flame brush from a random displacement of 1-D laminar flame solutions. The last one is the influence of the subgrid-scale flame wrinkling on the filtered chemical flame structure, which may be challenging to model.</p

    A joint numerical study of multi-regime turbulent combustion

    Get PDF
    This article presents a joint numerical study on the Multi Regime Burner configuration. The burner design consists of three concentric inlet streams, which can be operated independently with different equivalence ratios, allowing the operation of stratified flames characterized by different combustion regimes, including premixed, non-premixed, and multi-regime flame zones. Simulations were performed on three LES solvers based on different numerical methods. Combustion kinetics were simplified by using tabulated or reduced chemistry methods. Finally, different turbulent combustion modeling strategies were employed, covering geometrical, statistical, and reactor based approaches. Due to this significant scattering of simulation parameters, a conclusion on specific combustion model performance is impossible. However, with ten numerical groups involved in the numerical simulations, a rough statistical analysis is conducted: the average and the standard deviation of the numerical simulation are computed and compared against experiments. This joint numerical study is therefore a partial illustration of the community's ability to model turbulent combustion. This exercise gives the average performance of current simulations and identifies physical phenomena not well captured today by most modeling strategies. Detailed comparisons between experimental and numerical data along radial profiles taken at different axial positions showed that the temperature field is fairly well captured up to 60 mm from the burner exit. The comparison reveals, however, significant discrepancies regarding CO mass fraction prediction. Three causes may explain this phenomenon. The first reason is the higher sensitivity of carbon monoxide to the simplification of detailed chemistry, especially when multiple combustion regimes are encountered. The second is the bias introduced by artificial thickening, which overestimates the species’ mass production rate. This behavior has been illustrated by manufacturing mean thickened turbulent flame brush from a random displacement of 1-D laminar flame solutions. The last one is the influence of the subgrid-scale flame wrinkling on the filtered chemical flame structure, which may be challenging to model.</p

    Early clinical development of artemether-lumefantrine dispersible tablet: palatability of three flavours and bioavailability in healthy subjects

    Get PDF
    BACKGROUND\ud \ud Efforts to ease administration and enhance acceptability of the oral anti-malarial artemether-lumefantrine (A-L) crushed tablet to infants and children triggered the development of a novel dispersible tablet of A-L. During early development of this new formulation, two studies were performed in healthy subjects, one to evaluate the palatability of three flavours of A-L, and a second one to compare the bioavailability of active principles between the dispersible tablet and the tablet (administered crushed and intact).\ud \ud METHODS\ud \ud Study 1 was performed in 48 healthy schoolchildren in Tanzania. Within 1 day, all subjects tasted a strawberry-, orange- and cherry-flavoured oral A-L suspension for 10 seconds (without swallowing) in a randomized, single-blind, crossover fashion. The palatability of each formulation was rated using a visual analogue scale (VAS). Study 2 was an open, randomized crossover trial in 48 healthy adults given single doses of A-L (80 mg artemether + 480 mg lumefantrine) with food. The objectives were to compare the bioavailability of artemether, dihydroartemisinin (DHA) and lumefantrine between the dispersible tablet and the tablet administered crushed (primary objective) and intact (secondary objective).\ud \ud RESULTS\ud \ud Study 1 showed no statistically significant difference in VAS scores between the three flavours but cherry had the highest score in several ratings (particularly for overall liking). Study 2 demonstrated that the dispersible and crushed tablets delivered bioequivalent artemether, DHA and lumefantrine systemic exposure (area under the curve [AUC]); mean ± SD AUC0-tlast were 208 ± 113 vs 195 ± 93 h.ng/ml for artemether, 206 ± 81 vs 199 ± 84 h.ng/ml for DHA and 262 ± 107 vs 291 ± 106 h x μg/ml for lumefantrine. Bioequivalence was also shown for peak plasma concentrations (Cmax) of DHA and lumefantrine. Compared with the intact tablet, the dispersible tablet resulted in bioequivalent lumefantrine exposure, but AUC and Cmax values of artemether and DHA were 20-35% lower.\ud \ud CONCLUSIONS\ud \ud Considering that cherry was the preferred flavour, and that the novel A-L dispersible tablet demonstrated similar pharmacokinetic performances to the tablet administered crushed, a cherry-flavoured A-L dispersible tablet formulation was selected for further development and testing in a large efficacy and safety study in African children with malaria

    Directed Therapy for Exfoliation Syndrome

    No full text

    Il ruolo centrale del territorio come spazio di relazioni e cultura: Castelpizzuto e la sorgente del Folgare - Capitolo 11

    No full text
    Il ruolo centrale del territorio come spazio di relazioni e cultura: Castelpizzuto e la sorgente del Folgare

    nativity

    No full text

    Temperamento e risposte materne nei VLBW

    No full text
    corecore