33 research outputs found
Vitamin D receptor regulates intestinal proteins involved in cell proliferation, migration and stress response
BACKGROUND: Genome-wide association studies found low plasma levels of 25-hydroxyvitamin D and vitamin D receptor (VDR) polymorphisms associated with a higher prevalence of pathological changes in the intestine such as chronic inflammatory bowel diseases. METHODS: In this study, a proteomic approach was applied to understand the overall physiological importance of vitamin D in the small intestine, beyond its function in calcium and phosphate absorption. RESULTS: In total, 569 protein spots could be detected by two-dimensional-difference in-gel electrophoresis (2D-DIGE), and 82 proteins were considered as differentially regulated in the intestinal mucosa of VDR-deficient mice compared to that of wildtype (WT) mice. Fourteen clearly detectable proteins were identified by MS/MS and further analyzed by western blot and/or real-time RT-PCR. The differentially expressed proteins are functionally involved in cell proliferation, cell adhesion and cell migration, stress response and lipid transport. Mice lacking VDR revealed higher levels of intestinal proteins associated with proliferation and migration such as the 37/67 kDa laminin receptor, collagen type VI (alpha 1 chain), keratin-19, tropomyosin-3, adseverin and higher levels of proteins involved in protein trafficking and stress response than WT mice. In contrast, proteins that are involved in transport of bile and fatty acids were down-regulated in small intestine of mice lacking VDR compared to WT mice. However, plasma and liver concentrations of cholesterol and triglycerides were not different between the two groups of mice. CONCLUSION: Collectively, these data imply VDR as an important factor for controlling cell proliferation, migration and stress response in the small intestine
Low-Tech, Pilot Scale Purification of a Recombinant Spider Silk Protein Analog from Tobacco Leaves
Spider dragline is used by many members of the Araneae family not only as a proteinogenic safety thread but also for web construction. Spider dragline has been shown to possess high tensile strength in combination with elastic behavior. This high tensile strength can be attributed to the presence of antiparallel β-sheets within the thread; these antiparallel β-sheets are why the protein is classified as a silk. Due to the properties of spider silk and its technical and medical uses, including its use as a suture material and as a scaffold for tissue regeneration, spider dragline is a focus of the biotechnology industry. The production of sufficient amounts of spider silk is challenging, as it is difficult to produce large quantities of fibers because of the cannibalistic behavior of spiders and their large spatial requirements. In recent years, the heterologous expression of genes coding for spider silk analogs in various hosts, including plants such as Nicotiana tabacum, has been established. We developed a simple and scalable method for the purification of a recombinant spider silk protein elastin-like peptide fusion protein (Q-/K-MaSp1-100× ELP) after heterologous production in tobacco leaves involving heat and acetone precipitation. Further purification was performed using centrifugal Inverse Transition Cycling (cITC). Up to 400 mg of highly pure spider silk protein derivatives can be isolated from six kilograms of tobacco leaves, which is the highest amount of silk protein derivatives purified from plants thus far
Crystallization of Spätzle, a cystine-knot protein involved in embryonic development and innate immunity in Drosophila melanogaster
Crystallization of the cystine-knot protein Spätzle occurred following serendipitous limited degradation of the pro-Spätzle propeptide during the crystallization experiment
The Fate of Major Royal Jelly Proteins during Proteolytic Digestion in the Human Gastrointestinal Tract
Royal
jelly (RJ) is a beehive product with a complex composition,
major royal jelly proteins (MRJPs) being the most abundant proteins.
Cell culture and animal studies suggest various biological activities
for the full-length/native MRJPs. In the field of apitherapy, it is
assumed that MRJPs can positively affect human health. However, whenever
RJ is administered orally, the availability for assimilation in the
gastrointestinal tract is a prerequisite for MRJPs to have any effect
on humans. We here show that MRJPs vary in resistance to pepsin digestion
with MRJP2 being most stable and still present as full-length protein
after 24 h of digestion. In the intestinal phase, using trypsin and
chymotrypsin, MRJPs are rapidly digested with MRJP2 again showing
longest stability (40 min), suggesting that MRJPs can reach the small
intestine as full-length proteins but then have to be resorbed quickly
if full-length proteins are to fulfill any biological activity
The Fate of Major Royal Jelly Proteins during Proteolytic Digestion in the Human Gastrointestinal Tract
Royal
jelly (RJ) is a beehive product with a complex composition,
major royal jelly proteins (MRJPs) being the most abundant proteins.
Cell culture and animal studies suggest various biological activities
for the full-length/native MRJPs. In the field of apitherapy, it is
assumed that MRJPs can positively affect human health. However, whenever
RJ is administered orally, the availability for assimilation in the
gastrointestinal tract is a prerequisite for MRJPs to have any effect
on humans. We here show that MRJPs vary in resistance to pepsin digestion
with MRJP2 being most stable and still present as full-length protein
after 24 h of digestion. In the intestinal phase, using trypsin and
chymotrypsin, MRJPs are rapidly digested with MRJP2 again showing
longest stability (40 min), suggesting that MRJPs can reach the small
intestine as full-length proteins but then have to be resorbed quickly
if full-length proteins are to fulfill any biological activity
Proteomic profiling of cold thyroid nodules
Cold thyroid nodules ( CTNs) represent a frequent endocrine disorder accounting for up to 85% of thyroid nodules in a population living in an iodine-deficient area. Benign CTNs need to be distinguished from thyroid cancer, which is relatively rare. The molecular etiology of benign CTNs is unresolved. To obtain novel insights into their pathogenesis, protein expression profiling was performed in a series of 27 solitary CTNs ( 10 follicular adenoma and 20 adenomatous nodules) and surrounding normal thyroid tissues using two-dimensional gel electrophoresis combined with mass spectrometry analysis, Western blotting, and immunohistochemistry. The proteome analysis revealed a specific fingerprint of CTNs with up-regulation of three functional systems: 1) thyroid cell proliferation, 2) turnover of thyroglobulin, and 3) H2O2 detoxification. Western blot analysis and immunohistochemistry confirmed the proteome data and showed that CTNs exhibit significant up-regulation of proteins involved in thyroid hormone synthesis yet are deficient in T-4-containing thyroglobulin. This is consequential to intranodular iodide deficiency, mainly due to cytoplasmic sodium iodide symporter localization, and portrays the CTN as an activated proliferating lesion with an intranodular hypothyroid milieu. Furthermore, we provide preliminary evidence that up-regulation of H2O2 generation in CTNs could override the antioxidative system resulting in oxidative stress, which is suggested by the finding of raised 8-oxo-guanidine DNA adduct formation in CTNs
Factors and Selenocysteine Insertion Sequence Requirements for the Synthesis of Selenoproteins from a Gram-Positive Anaerobe in Escherichia coli▿
Selenoprotein synthesis in Escherichia coli strictly depends on the presence of a specific selenocysteine insertion sequence (SECIS) following the selenocysteine-encoding UGA codon of the respective mRNA. It is recognized by the selenocysteine-specific elongation factor SelB, leading to cotranslational insertion of selenocysteine into the nascent polypeptide chain. The synthesis of three different selenoproteins from the gram-positive anaerobe Eubacterium acidaminophilum in E. coli was studied. Incorporation of 75Se into glycine reductase protein B (GrdB1), the peroxiredoxin PrxU, and selenophosphate synthetase (SelD1) was negligible in an E. coli wild-type strain and was fully absent in an E. coli SelB mutant. Selenoprotein synthesis, however, was strongly increased if selB and selC (tRNASec) from E. acidaminophilum were coexpressed. Putative secondary structures downstream of the UGA codons did not show any sequence similarity to each other or to the E. coli SECIS element. However, mutations in these structures strongly reduced the amount of 75Se-labeled protein, indicating that they indeed act as SECIS elements. UGA readthrough mediated by the three different SECIS elements was further analyzed using gst-lacZ translational fusions. In the presence of selB and selC from E. acidaminophilum, UGA readthrough was 36 to 64% compared to the respective cysteine-encoding UGC variant. UGA readthrough of SECIS elements present in Desulfomicrobium baculatum (hydV), Treponema denticola (selD), and Campylobacter jejuni (selW-like gene) was also considerably enhanced in the presence of E. acidaminophilum selB and selC. This indicates recognition of these SECIS elements and might open new perspectives for heterologous selenoprotein synthesis in E. coli
Camelysin Is a Novel Surface Metalloproteinase from Bacillus cereus
Bacillus cereus frequently causes food poisoning or nosocomial diseases. Vegetative cells express the novel surface metalloproteinase camelysin (casein-cleaving metalloproteinase) during exponential growth on complex, peptide-rich media. Camelysin is strongly bound to the cell surface and can be solubilized only by detergents or butanol. Camelysin spontaneously migrates from the surface of intact bacterial cells to preformed liposomes. The complete sequence of the camelysin-encoding gene, calY, was determined by reverse PCR on the basis of the N-terminal sequence and some internal tryptic cleavage peptides. The calY gene codes for a polypeptide of 21.569 kDa with a putative signal peptide of 27 amino acids (2.513 kDa) preceding the mature protein (19.056 kDa). Although the predicted amino acid sequence of CalY does not exhibit a typical metalloprotease consensus sequence, high-pressure liquid chromatography-purified camelysin contains one zinc ion per protein molecule. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and tryptic peptide mass fingerprinting confirmed the identity of this zinc-binding protein as CalY. Disruption of the calY gene results in a strong decrease in the cell-bound proteolytic activity on various substrates