11 research outputs found

    The development and verification of a highly accurate collision prediction model for automated noncoplanar plan delivery

    No full text
    PurposeSignificant dosimetric benefits had been previously demonstrated in highly noncoplanar treatment plans. In this study, the authors developed and verified an individualized collision model for the purpose of delivering highly noncoplanar radiotherapy and tested the feasibility of total delivery automation with Varian TrueBeam developer mode.MethodsA hand-held 3D scanner was used to capture the surfaces of an anthropomorphic phantom and a human subject, which were positioned with a computer-aided design model of a TrueBeam machine to create a detailed virtual geometrical collision model. The collision model included gantry, collimator, and couch motion degrees of freedom. The accuracy of the 3D scanner was validated by scanning a rigid cubical phantom with known dimensions. The collision model was then validated by generating 300 linear accelerator orientations corresponding to 300 gantry-to-couch and gantry-to-phantom distances, and comparing the corresponding distance measurements to their corresponding models. The linear accelerator orientations reflected uniformly sampled noncoplanar beam angles to the head, lung, and prostate. The distance discrepancies between measurements on the physical and virtual systems were used to estimate treatment-site-specific safety buffer distances with 0.1%, 0.01%, and 0.001% probability of collision between the gantry and couch or phantom. Plans containing 20 noncoplanar beams to the brain, lung, and prostate optimized via an in-house noncoplanar radiotherapy platform were converted into XML script for automated delivery and the entire delivery was recorded and timed to demonstrate the feasibility of automated delivery.ResultsThe 3D scanner measured the dimension of the 14 cm cubic phantom within 0.5 mm. The maximal absolute discrepancy between machine and model measurements for gantry-to-couch and gantry-to-phantom was 0.95 and 2.97 cm, respectively. The reduced accuracy of gantry-to-phantom measurements was attributed to phantom setup errors due to the slightly deformable and flexible phantom extremities. The estimated site-specific safety buffer distance with 0.001% probability of collision for (gantry-to-couch, gantry-to-phantom) was (1.23 cm, 3.35 cm), (1.01 cm, 3.99 cm), and (2.19 cm, 5.73 cm) for treatment to the head, lung, and prostate, respectively. Automated delivery to all three treatment sites was completed in 15 min and collision free using a digital Linac.ConclusionsAn individualized collision prediction model for the purpose of noncoplanar beam delivery was developed and verified. With the model, the study has demonstrated the feasibility of predicting deliverable beams for an individual patient and then guiding fully automated noncoplanar treatment delivery. This work motivates development of clinical workflows and quality assurance procedures to allow more extensive use and automation of noncoplanar beam geometries

    Viability of Noncoplanar VMAT for liver SBRT compared with coplanar VMAT and beam orientation optimized 4Ï€ IMRT

    Get PDF
    PurposeThe 4Ï€ static non-coplanar radiotherapy delivery technique has demonstrated better normal tissue sparing and dose conformity than the clinically used volumetric modulated arc therapy (VMAT). It is unclear whether this is a fundamental limitation of VMAT delivery or the coplanar nature of its typical clinical plans. The dosimetry and the limits of normal tissue toxicity constrained dose escalation of coplanar VMAT, non-coplanar VMAT and 4Ï€ radiotherapy are quantified in this study.Methods and materialsClinical stereotactic body radiation therapy plans for 20 liver patients receiving 30-60 Gy using coplanar VMAT (cVMAT) were re-planned using 3-4 partial non-coplanar arcs (nVMAT) and 4Ï€ with 20 intensity-modulated non-coplanar fields. The conformity number (CN), homogeneity index (HI), 50% dose spillage volume (R50), normal liver volume receiving >15 Gy (VL>15), dose to organs at risk (OARs), and tumor control probability (TCP) were compared for all three treatment plans. The maximum tolerable dose (MTD) yielding a normal liver normal tissue control probability (NTCP) below 1%, 5%, and 10% was calculated with the Lyman-Kutcher-Burman model for each plan, as well as the resulting survival fractions at one, two, three, and four years.ResultsCompared to cVMAT, the nVMAT and 4Ï€ plans reduced VL>15 by an average of 5 cm3 and 80 cm3, respectively. 4Ï€ reduced the 50% dose spillage volume by ~23% compared to both VMAT plans, and either significantly decreased or maintained OAR doses. The 4Ï€ MTDs and survival fractions were significantly higher than both cVMAT and nVMAT (p<0.05) for all normal liver NTCP limits used in this study.ConclusionsThe 4Ï€ technique provides significantly better OAR sparing than both cVMAT and vMAT and enables more clinically relevant dose escalation for tumor local control. Therefore, despite the current accessibility of nVMAT, it is not a viable alternative to 4Ï€ for liver SBRT

    Viability of Noncoplanar VMAT for liver SBRT compared with coplanar VMAT and beam orientation optimized 4Ï€ IMRT

    No full text
    Purpose: The 4π static noncoplanar radiation therapy delivery technique has demonstrated better normal tissue sparing and dose conformity than the clinically used volumetric modulated arc therapy (VMAT). It is unclear whether this is a fundamental limitation of VMAT delivery or the coplanar nature of its typical clinical plans. The dosimetry and the limits of normal tissue toxicity constrained dose escalation of coplanar VMAT, noncoplanar VMAT and 4π radiation therapy are quantified in this study. Methods and materials: Clinical stereotactic body radiation therapy plans for 20 liver patients receiving 30 to 60 Gy using coplanar VMAT (cVMAT) were replanned using 3 to 4 partial noncoplanar arcs (nVMAT) and 4π with 20 intensity modulated noncoplanar fields. The conformity number, homogeneity index, 50% dose spillage volume, normal liver volume receiving >15 Gy, dose to organs at risk (OARs), and tumor control probability were compared for all 3 treatment plans. The maximum tolerable dose yielding a normal liver normal tissue control probability <1%, 5%, and 10% was calculated with the Lyman-Kutcher-Burman model for each plan as well as the resulting survival fractions at 1, 2, 3, and 4 years. Results: Compared with cVMAT, the nVMAT and 4π plans reduced liver volume receiving >15 Gy by an average of 5 cm3 and 80 cm3, respectively. 4π reduced the 50% dose spillage volume by ∼23% compared with both VMAT plans, and either significantly decreased or maintained OAR doses. The 4π maximum tolerable doses and survival fractions were significantly higher than both cVMAT and nVMAT (P < .05) for all normal liver normal tissue control probability limits used in this study. Conclusions: The 4π technique provides significantly better OAR sparing than both cVMAT and nVMAT and enables more clinically relevant dose escalation for tumor local control. Therefore, despite the current accessibility of nVMAT, it is not a viable alternative to 4π for liver SBRT

    Treatment planning comparison of IMPT, VMAT and 4Ï€ radiotherapy for prostate cases

    Get PDF
    BACKGROUND: Intensity-modulated proton therapy (IMPT), non-coplanar 4π intensity-modulated radiation therapy (IMRT), and volumetric-modulated arc therapy (VMAT) represent the most advanced treatment methods based on heavy ion and X-rays, respectively. Here we compare their performance for prostate cancer treatment. METHODS: Ten prostate patients were planned using IMPT with robustness optimization, VMAT, and 4π to an initial dose of 54 Gy to a clinical target volume (CTV) that encompassed the prostate and seminal vesicles, then a boost prescription dose of 25.2 Gy to the prostate for a total dose of 79.2 Gy. The IMPT plans utilized two coplanar, oblique scanning beams 10° posterior of the lateral beam positions. Range uncertainties were taken into consideration in the IMPT plans. VMAT plans used two full, coplanar arcs to ensure sufficient PTV coverage. 4π plans were created by inversely selecting and optimizing 30 beams from 1162 candidate non-coplanar beams using a greedy column generation algorithm. CTV doses, bladder and rectum dose volumes (V40, V45, V60, V65, V70, V75, and V80), R100, R50, R10, and CTV homogeneity index (D95/D5) were evaluated. RESULTS: Compared to IMPT, 4π resulted in lower anterior rectal wall mean dose as well as lower rectum V40, V45, V60, V65, V70, and V75. Due to the opposing beam arrangement, IMPT resulted in significantly (p < 0.05) greater femoral head doses. However, IMPT plans had significantly lower bladder, rectum, and anterior rectal wall max dose. IMPT doses were also significantly more homogeneous than 4π and VMAT doses. CONCLUSION: Compared to the VMAT and 4π plans, IMPT treatment plans are superior in CTV homogeneity and maximum point organ-at-risk (OAR) doses with the exception of femur heads. IMPT is inferior in rectum and bladder volumes receiving intermediate to high doses, particularly to the 4π plans, but significantly reduced low dose spillage and integral dose, which are correlated to secondary cancer for patients with expected long survival. The dosimetric benefits of 4π plans over VMAT are consistent with the previous publication
    corecore