38 research outputs found

    A New Transition Radiation Detector for the CREAM experiment

    No full text
    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to investigate the source, propagation and acceleration mechanism of high energy cosmic-ray nuclei, by directly measuring their energy and charge. Incorporating a Transition Radiation Detector (TRD) provides a model independent energy measurement complementary to the calorimeter, as well as additional track reconstruction capability. A new TRD design provides a compact, robust, reliable, low density detector to measure incident nucleus energy for 3 < Z < 26 nuclei in the Lorentz gamma factor range of 10 2 -10 5. The TRD design, R&D;, construction milestones, beam test results and a progress of the final TRD integration in the CREAM instrument are reported

    Monte Carlo simulations of the ISS-CREAM instrument

    No full text
    Cosmic Ray Energetics and Mass for the International Space Station (ISS-CREAM) is designed to directly measure the energy spectra of high-energy cosmic rays, encompassing proton to iron nuclei, over the energy range from 1012 to 1015 eV [1]. The capability to measure an extended energy range enables us to probe the origin and acceleration mechanisms of cosmic rays. The ISS-CREAM instrument is configured with the balloon-borne CREAM calorimeter (CAL) for energy measurements and four layers of a finely segmented Silicon Charge Detector (SCD) for charge measurements. In addition, two new compact detectors have been developed for electron/proton separation: Top and Bottom scintillator-based counting detectors (TCD/BCD) and a boronated scintillator detector (BSD). Simulations use the GEANT3 package [2] with the FLUKA hadronic model [3]. An isotropic event generator was developed for the ISS-CREAM geometry with particles incident from the upper hemisphere. We will present simulation results regarding ISS-CREAM performance, including trigger rates, energy resolution, energy response, tracking resolution, charge efficiency, etc

    On-orbit performance of the ISS-CREAM SCD

    No full text
    The Cosmic Ray Energetic And Mass for the International Space Station (ISS-CREAM) experiment is designed for precision measurements of energy spectra and elemental composition of cosmic rays. It was launched and installed on the ISS in August 2017. The Silicon Charge Detector (SCD), placed at the top of the ISS-CREAM payload, consists of 4 layers with a total of 10,752 silicon pixels which have 1.37 × 1.57 cm^2 size each. Each layer is arranged in such a fashion that its active detection area of 78 × 74 cm^2 is free of any dead area. The SCD 4-layer conïŹguration was chosen to achieve the best precision in measuring the charge of cosmic rays from proton to iron nuclei with a charge resolution of 0.1 − 0.3e. We will present its on-orbit performance and operation status on the ISS since the launch

    On-orbit performance of the ISS-CREAM calorimeter

    No full text
    Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) experiment is designed to study the composition and energy spectra of cosmic-ray particles from 10^12 to 10^15 eV. ISS-CREAM was launched and deployed to the ISS in August 2017. The ISS-CREAM payload employs a Silicon Charge Detector for charge measurements, Top and Bottom Counting Detector for electron-hadron separation and a low-energy trigger, a Boronated Scintillator Detector for additional electron-hadron separation, and a Calorimeter (CAL) for en-ergy measurements and a high-energy trigger. The CAL is constructed of 20 layers of tungsten plates interleaved with scintillating fiber ribbons read out by hybrid-photodiodes (HPDs) and densified carbon targets. Each CAL layer is made of 3.5 mm (1 X_0) thick tungsten plates alter-nating with fifty 0.5 mm thick and 1 cm wide scintillating fiber ribbons. Consecutive layers of fiber ribbons are installed orthogonal to each other. Energy deposition in the CAL determines the particle energy and provides tracking information to determine which segment(s) of the charge detectors to use for the charge measurement. Tracking for showers is accomplished by extrapolating each shower axis back to the charge detectors. The performance of the ISS-CREAM CAL during flight is presented

    e/p separation study using the ISS-CREAM top and bottom counting detectors

    No full text
    Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) is an experiment for studying the origin, acceleration, and propagation mechanisms of high-energy cosmic rays. The ISS-CREAM instrument was launched on the 14th of August 2017 to the ISS aboard the SpaceX-12 Dragon spacecraft. The Top and Bottom Counting Detectors (TCD/BCD) are parts of the ISS-CREAM instrument and designed for studying electron and gamma-ray physics. The TCD/BCD each consist of an array of 20 × 20 photodiodes on a plastic scintillator. The TCD/BCD can separate electrons from protons by using the difference between the shapes of electromagnetic and hadronic showers in the high energy region. The Boosted Decision Tree (BDT) method, which is a deep learning method, is used in this separation study. We will present results of the electron/proton separation study and rejection power in various energy ranges

    ISS-CREAM flight operation

    No full text
    The Cosmic Ray Energetics And Mass experiment for the International Space Station (ISS-CREAM) is designed and built to measure the elemental energy spectra of cosmic-ray particles (1 ≀ Z ≀ 26) and electrons. It measures the energy of incident cosmic rays from 10^12 to 10^15 eV. ISS-CREAM was launched and deployed to the ISS in August 2017. The Science Operations Center (SOC) at the University of Maryland has been operating the payload on the International Space Station (ISS) in coordination with the Payload Operations Integration Center (POIC) at NASA’s Marshall Space Flight Center. The SOC has been responsible for sending commands to and receiving data from the Science Flight Computer (SFC) on board ISS-CREAM. The ISS-CREAM data taking program interfaces with the POIC using the Telescience Resources Kit through the Software Toolkit for Ethernet Lab-Like Architecture developed by the Boeing Company. The command uplink and data downlink have been through the Track-ing and Data Relay Satellite System. We present the ISS-CREAM flight operations including ISS communications, SFC performance, etc

    Cosmic-ray Heavy Nuclei Spectra Using the ISS-CREAM Instrument

    No full text
    International audienceCosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM) was designed to study high-energy cosmic rays up to PeV and recorded data from August 22nd, 2017 to February 12th, 2019 on the ISS. In this analysis, the Silicon Charge Detector (SCD), CALorimeter (CAL), and Top and Bottom Counting Detectors (TCD/BCD) are used. The SCD is composed of four layers and provides the measurement of cosmic-ray charges with a resolution of ∌\sim0.2e. The CAL comprises 20 interleaved tungsten plates and scintillators, measures the incident cosmic-ray particles' energies, and provides a high energy trigger. The TCD/BCDs consist of photodiode arrays and plastic scintillators and provide a low-energy trigger. In this analysis, the SCD top layer is used for charge determination. Here, we present the heavy nuclei analysis using the ISS-CREAM instrument

    Performance of the BACCUS Transition Radiation Detector

    No full text
    International audienceThe Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) balloon-borne exper-iment flew for 30 days over Antarctica in December 2016. It is the successor of the CREAMballoon program in Antarctica which recorded a total cumulative exposure of 161 days. BAC-CUS is primarily aimed to measure cosmic-ray boron and carbon fluxes at the highest energiesreachable with a balloon or satellite experiment, in order to provide essential information for abetter understanding of cosmic-ray propagation in the Galaxy. The payload is made of multipleparticle physics detectors which measure the charge up to Z=26 and energy of incident particlesfrom a few hundred GeV to a few PeV. The newly designed Transition Radiation Detector (TRD)measures signals that are a function of the charge and Lorentz factor. In April 2016, BACCUSwas taken to CERN in its flight configuration to characterize its detectors’ response to beams ofelectrons and pions. The performance of the TRD using beam test data are reported in this paper
    corecore